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Abstract. Over the last decade process mining emerged
as a new analytical discipline able to answer a variety of
questions based on event data. Event logs have a very
particular structure; events have timestamps, refer to ac-
tivities and resources, and need to be correlated to form
process instances. Process mining results tend to be very
different from classical data mining results, e.g., process
discovery may yield end-to-end process models captur-
ing different perspectives rather than decision trees or
frequent patterns. A process-mining tool like ProM pro-
vides hundreds of different process mining techniques
ranging from discovery and conformance checking to fil-
tering and prediction. Typically, a combination of tech-
niques is needed and, for every step, there are different
techniques that may be very sensitive to parameter set-
tings. Moreover, event logs may be huge and may need
to be decomposed and distributed for analysis. These
aspects make it very cumbersome to analyze event logs
manually. Process mining should be repeatable and au-
tomated. Therefore, we propose a framework to sup-
port the analysis of process mining workflows. Exist-
ing scientific workflow systems and data mining tools
are not tailored towards process mining and the arti-
facts used for analysis (process models and event logs).
This paper structures the basic building blocks needed
for process mining and describes various analysis scenar-
ios. Based on these requirements we implemented Rapid-
ProM, a tool supporting scientific workflows for process
mining. Examples illustrating the different scenarios are
provided to show the feasibility of the approach.

1 Introduction

Scientific Workflow Management (SWFM) systems help
users to design, compose, execute, archive, and share

workflows that represent some type of analysis or exper-
iment. Scientific workflows are often represented as di-
rected graphs where the nodes represent “work” and the
edges represent paths along which data and results can
flow between nodes. Next to “classical” SWFM systems
such as Taverna [18], Kepler [27], Galaxy [15], Clowd-
Flows [22], and jABC [33], one can also see the uptake of
integrated environments for data mining, predictive ana-
lytics, business analytics, machine learning, text mining,
reporting, etc. Notable examples are RapidMiner [17]
and KNIME [4]. These can be viewed as SWFM systems
tailored towards the needs of data scientists.

Traditional data-driven analysis techniques do not
consider end-to-end processes. People are process mod-
els by hand (e.g., Petri nets, UML activity diagrams,
or BPMN models), but this modeled behavior is seldom
aligned with real-life event data. Process mining aims to
bridge this gap by connecting end-to-end process models
to the raw events that have been recorded.

Process-mining techniques enable the analysis of a
wide variety of processes using event data. For example,
event logs can be used to automatically learn a process
model (e.g., a Petri net or BPMN model). Next to the
automated discovery of the real underlying process, there
are process-mining techniques to analyze bottlenecks, to
uncover hidden inefficiencies, to check compliance, to ex-
plain deviations, to predict performance, and to guide
users towards “better” processes. Hundreds of process-
mining techniques are available and their value has been
proven in many case studies. See for example the twenty
case studies on the webpage of the IEEE Task Force
on Process Mining [19]. The open source process min-
ing framework ProM provides hundreds of plug-ins and
has been downloaded over 100.000 times. The growing
number of commercial process mining tools (Disco, Per-
ceptive Process Mining, Celonis Process Mining, QPR
ProcessAnalyzer, Software AG/ARIS PPM, Fujitsu In-
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Fig. 1: Overview of the framework to support process mining workflows

terstage Automated Process Discovery, etc.) further il-
lustrates the uptake of process mining.

For process mining typically many analysis steps need
to be chained together. Existing process mining tools do
not support such analysis workflows. As a result, anal-
ysis may be tedious and it is easy to make errors. Re-
peatability and provenance are jeopardized by manually
executing more involved process mining workflows.

This paper is motivated by the observation that tool
support for process mining workflows is missing. None
of the process mining tools (ProM, Disco, Perceptive,

Celonis, QPR, etc.) provides a facility to design and ex-
ecute analysis workflows. None of the scientific work-
flow management systems including analytics suites like
RapidMiner and KNIME support process mining. Yet,
process models and event logs are very different from the
artifacts typically considered. Therefore, we propose the
framework to support process mining workflows depicted
in Figure 1.

This paper considers four analysis scenarios where
process mining workflows are essential:
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– Result (sub-)optimality : Often different process min-
ing techniques can be applied and upfront it is not
clear which one is most suitable. By modeling the
analysis workflow, one can just perform all candi-
date techniques on the data, evaluate the different
analysis results, and pick the result with the highest
quality (e.g., the process model best describing the
observed behavior).

– Parameter sensitivity : Different parameter settings
and alternative ways of filtering can have unexpected
effects. Therefore, it is important to see how sensitive
the results are (e.g., leaving out some data or chang-
ing a parameter setting a bit should not change the
results dramatically). It is important to not simply
show the analysis result without having some confi-
dence indications.

– Large-scale experiments: Each year new process min-
ing techniques become available and larger data sets
need to be tackled. For example, novel discovery tech-
niques need to be evaluated through massive testing
and larger event logs need to be decomposed to make
analysis feasible. Without automated workflow sup-
port, these experiments are tedious, error-prone and
time consuming.

– Repeating questions: It is important to lower the thresh-
old for process mining to let non-expert users ap-
proach it. Questions are often repetitive, e.g., the
same analysis is done for a different period or a dif-
ferent group of cases. Process mining workflows fa-
cilitate recurring forms of analysis.

As shown in Figure 1 these scenarios build on process
mining building blocks grouped into six categories:

– Event data extraction: Building blocks to extract data
from systems or to create synthetic data.

– Event data transformation: Building blocks to pre-
process data (e.g., splitting, merging, filtering, and
enriching) before analysis.

– Process model extraction: Building blocks to obtain
process models, e.g., through discovery or selection.

– Process model analysis: Building blocks to evaluate
models, e.g., to check the internal consistency or to
check conformance with respect to an event log.

– Process model transformations: Building blocks to re-
pair, merge or decompose process models.

– Process model enhancement : Building blocks to en-
rich event logs with additional perspectives or to sug-
gest process improvements.

Building blocks can be chained together to support
specific analysis scenarios. The suggested approach has
been implemented thereby building on the process min-
ing framework ProM and the workflow and data mining
capabilities of RapidMiner. The resulting tool is called
RapidProM which supports process mining workflows.
ProM was selected because it is open source and there
is no other tool that supports as many process mining

building blocks. RapidMiner was selected because it al-
lows for extensions that can be offered through a mar-
ketplace. RapidProM is also offered as such an extension
and the infrastructure allows us to mix process mining
with traditional data mining approaches, text mining,
reporting, and machine learning. Overall, RapidProM
offers compressive support for any type of analysis in-
volving event data and processes.

The remainder of this paper is organized as follows.
Section 2 discusses related work and positions our frame-
work. An initial set of process-mining building blocks is
described in Section 3. These building blocks support
the four analysis scenarios described in Section 4. The
RapidProM implementation is presented in Section 5.
Section 6 evaluates the approach by showing concrete
examples. Finally, Section 7 concludes the paper.

2 Related Work

Over the last decade, process mining emerged as a new
scientific discipline on the interface between process mod-
els and event data [36]. Conventional Business Process
Management (BPM) [37,51] and Workflow Management
(WfM) [25, 41] approaches and tools are mostly model-
driven with little consideration for event data. Data Min-
ing (DM) [16], Business Intelligence (BI), and Machine
Learning (ML) [29] focus on data without considering
end-to-end process models. Process mining aims to bridge
the gap between BPM and WfM on the one hand and
DM, BI, and ML on the other hand. A wealth of pro-
cess discovery [24, 43, 50] and conformance checking [1,
2,39] techniques has become available. For example, the
process mining framework ProM [47] provides hundreds
of plug-ins supporting different types of process mining
(www.processmining.org).

This paper takes a different perspective on the gap
between analytics and BPM/WfM. We propose to use
workflow technology for process mining rather than the
other way around. To this end, we focus on particular
kinds of scientific workflows composed of process mining
operators.

Differences between scientific and business workflows
have been discussed in several papers [3]. Despite unifi-
cation attempts (e.g., [31]) both domains have remained
quite disparate due to differences in functional require-
ments, selected priorities, and disjoint communities.

Obviously, the work reported in this paper is closer to
scientific workflows than business workflows (i.e., tradi-
tional BPM/WFM from the business domain). Numer-
ous Scientific Workflow Management (SWFM) systems
have been developed. Examples include Taverna [18],
Kepler [27], Galaxy [15], ClowdFlows [22], jABC [33],
Vistrails, Pegasus, Swift, e-BioFlow, VIEW, and many
others. Some of the SWFM systems (e.g., Kepler and
Galaxy) also provide repositories of models. The web-
site myExperiment.org lists over 3500 workflows shared

www.processmining.org
myExperiment.org
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by its members [14]. The diversity of the different ap-
proaches illustrates that the field is evolving in many
different ways. We refer to the book [34] for an extensive
introduction to SFWM.

An approach to mine process models for scientific
workflows (including data and control dependencies) was
presented in [53]. This approach uses “process mining
for scientific workflows” rather than applying scientific
workflow technology to process mining. The results in
[53] can be used to recommend scientific workflow com-
positions based on actual usage. To our knowledge, Rapid-
ProM is the only approach supporting “scientific work-
flows for process mining”. The demo paper [28] reported
on the first implementation. In the meantime, Rapid-
ProM has been refactored based on various practical
experiences.

There are many approaches that aim to analyze repos-
itories of scientific workflows. In [52], the authors pro-
vide an extensible process library for analyzing jABC
workflows empirically. In [12] graph clustering is used
to discover subworkflows from a repository of workflows.
Other analysis approaches include [13], [26], and [49].

Scientific workflows have been developed and adopted
in various disciplines, including physics, astronomy, bioin-
formatics, neuroscience, earth science, economics, health,
and social sciences. Various collections of reusable work-
flows have been proposed for all of these disciplines. For
example, in [35] the authors describe workflows for quan-
titative data analysis in the social sciences.

The boundary between data analytics tools and sci-
entific workflow management systems is not well-defined.
Tools like RapidMiner [17] and KNIME [4] provide graph-
ical workflow modeling and execution capabilities. Even
the scripting in R [20] can be viewed as primitive work-
flow support. In this paper we build on RapidMiner as
it allows us to mix process mining with data mining and
other types of analytics (e.g., text mining). Earlier we de-
veloped extensions of ProM for chaining process mining
plug-ins together, but these were merely prototypes. We
also realized a prototype using and integration between
KNIME and ProM. However, for reasons of usability, we
opted for RapidMiner as a platform to expose process
mining capabilities.

3 Definition of the process-mining building
blocks

To create scientific workflows for process mining we need
to define the building blocks, which are, then, connected
with each other to create meaningful analysis scenarios.
This section discusses a taxonomy and a repertoire of
such building blocks inspired by the so-called “BPM use
cases”, which were presented in [37]. The use cases struc-
ture the BPM discipline and to provide a generic way
of describing the usage of BPM techniques. The BPM
use cases are characterized by two main aspects. Firstly,

they are abstract as they are not linked to any specific
technique or algorithm. Secondly, they represent logi-
cal units of work, i.e. they cannot be conceptually split
while maintaining their generality. This does not imply
that concrete techniques that implement BPM use cases
cannot be composed by micro-steps, according to the
implementation and design that was used.

Similarly, each process-mining building block for cre-
ating process-mining workflows represents a logical unit
of work. The building blocks are conceptual in the sense
that they are independent of the specific implementation
and represent atomic operations. The process-mining
building blocks can be chained, thus producing process-
mining scientific workflows to answer a variety of process-
mining questions.

Each process-mining building block takes a number
of inputs and produces certain outputs. The inputs el-
ements represent the set (or sets) of abstract objects
required to perform the operation. The process-mining
building block component represents the logical unit of
work needed to process the inputs and produce the out-
puts. Inputs and outputs are indicated through circles
whereas a process-mining building block is represented
by a rectangle. Arcs are used to connect the blocks to
the inputs and outputs.

Two process-mining building blocks a and b are
chained if one or more outputs of a are used as an in-
puts in b. As mentioned, inputs and outputs are depicted
by circles. The letter inside a circle specifies the type of
the input or output. The following types of inputs and
outputs are considered in this paper:

– Process models, which are a representation of the be-
havior of a process, are represented by letter “M”.
Here we abstract from the notation used, e.g., Petri
nets, Heuristics nest, BPMN models are concrete rep-
resentation languages.

– Event data sets, which contain the recording of the
execution of process instances within the information
system(s), regardless of the format. They are repre-
sented by letter “E”. MXML and XES are standard
formats to store events.

– Information systems, which supports the performance
of processes at runtime. They are represented by the
label “S”. Information systems may generate events
used for analysis and process mining results (e.g.,
prediction) may influence the information system.

– Sets of parameters to configure the application of
process-mining building blocks (e.g., thresholds, wei-
ghts, ratios, etc.). They are represented by letter “P”.

– Results that are generated as outputs of a process-
mining building blocks. This can be as simple as a
number or more complex structures like a detailed re-
port. In principle, the types enumerated above in this
list (e.g., process models) can also be results. How-
ever, it is worth differentiating those specific types
of outputs from results which are not process mining
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Fig. 2: Process-mining building blocks related to event
data extraction.

specific (like a bar chart). Results are represented by
letter “R”.

– Additional Data Sets that can be used as input for
certain process-mining building blocks. These are rep-
resented by the letter “D”. Such an additional data
set can be used to complement event data with con-
text information (e.g., one can use weather or stock-
market data to augment the event log with additional
data).

The remainder of this section provides a taxonomy of
process-mining building blocks grouped in six different
categories. For each category, several building blocks are
provided. They were selected because of their usefulness
for the definition of many process-mining scientific work-
flows. The taxonomy is not intended to be exhaustive,
there will be new process-mining building blocks as the
discipline evolves.

3.1 Event data extraction

Event data are the cornerstone of process mining. In or-
der to be used for analysis, event data has to be extracted
and made available. All of the process-mining building
blocks of this category can extract event data from differ-
ent sources. Figure 2 shows some process-mining build-
ing blocks that belong to this category.

Import event data ( ImportED). Information systems store
event data in different format and media, from files in
a hard drive to databases in the cloud. This building
block represents the functionality of extracting event
data from any of these sources. Some parameters can
be set to drive the event-data extraction. For example,
event data can be extracted from files in standard for-
mats, such as XES1, or from transactional databases.

1 XES (Extensible Event Stream) is an XML-based standard for
event logs http://www.xes-standard.org. It provides a standard
format for the interchange of event log data between tools and
application domains.

Fig. 3: Process-mining building blocks related to event
data transformations

Generate event data from model ( GenerED). In a num-
ber of cases, one wants to assess whether a certain tech-
nique returns the expected or desired output (i.e., syn-
thetic event data). For this assessment, controlled exper-
iments are necessary where input data is generated in a
way that the expected output of the technique is clearly
known. Given a process model M , this building block
represents the functionality of generating event data that
record the possible execution of instances of M . This is
an important function for, e.g., testing a new discovery
technique. Various simulators have been developed to
support the generation of event data.

3.2 Event data transformation

Sometimes, event data sets are not sufficiently rich to en-
able certain process-mining analyses. In addition, certain
data-set portions should be excluded, because they are
are irrelevant, out of the scope of the analysis or, even,
noise. Therefore, a number of event data transformations
may be required before doing further analysis. This cat-
egory comprises the building blocks to provide function-
alities to perform the necessary event data transforma-
tions. Figure 3 the repertoire of process-mining building
blocks that belong to this category.

Add data to event data ( AddED). In order to perform a
certain analysis or to improve the results, the event data
can be augmented with additional data coming from dif-
ferent sources. For instance, if the process involves citi-
zens, the event data can be augmented with data from

http://www.xes-standard.org
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the municipality data source. If the level of performance
of a process is suspected to be influenced by the weather,
event data can incorporate weather data coming from a
system storing such a kind of data. If the event data con-
tains a ZIP code, then other data fields such as country
or city can be added to the event data from external
data sources. This building block represents the func-
tionality of augmenting event data using external data,
represented as a generic data set in the figure.

Filter event data ( FilterED). Several reasons may ex-
ist to filter out part of the event data. For instance, the
process behavior may exhibit concept drifts over time. In
those situations, the analysis needs to focus on certain
parts of the event data instead of all of it. One could
filter the event data and use only those events that oc-
curred, e.g., in year 2015. As a second example, the same
process may run at different geographical locations. One
may want to restrict the scope of the analysis to a spe-
cific location by filtering out the event data referring to
different locations. This motivates the importance of be-
ing able to filter event data in various ways.

Split event data ( SplitED). Sometimes, the organiza-
tion generating the event data is interested in comparing
the process’ performances for different customers, offices,
divisions, involved employees, etc. To perform such com-
parison, the event data needs to be split according to a
certain criterion, e.g., according to organizational struc-
tures, and the analysis needs to be iterated over each
portion of the event data. Finally, the results can be com-
pared to highlight difference. Alternatively, the splitting
of the data may be motivated by the size of the data. It
may be intractable to analyze all data without decompo-
sition or distribution. Many process-mining techniques
are exponential in the number of different activities and
linear in the size of the event log. If data is split in a
proper way, the results of applying the techniques to the
different portions can be fused into a single result. For in-
stance, work [38] discusses how to split event data while
preserving the correctness of results. This building block
represents the functionality of splitting event data into
overlapping or non-overlapping portions.

Merge event data ( MergED). This process-mining build-
ing block is the dual of the previous: data sets from
different information systems are merged into a single
event data set. This process-mining building block can
also tackle the typical problems of data fusion, such as
redundancy and inconsistency.

3.3 Process model extraction

Process mining revolves around process models to rep-
resent the behavior of a process. This category is con-
cerned with providing building blocks to mine a process
model from event data as well as to select or extract it

Fig. 4: Process-mining building blocks related to process
model extraction

from a process-model collection. Figure 4 lists a num-
ber of process-mining building blocks belonging to this
category.

Import process model ( ImportM). Process models can
be stored in some media for later retrieval to conduct
some analyses. This building block represents the func-
tionality of loading a process model from some reposi-
tory.

Discover process model from event data ( DiscM). Pro-
cess models can be manually designed to provide a nor-
mative definition for a process. These models are usually
intuitive and understandable, but they might not de-
scribe accurately what happens in reality. Event data
represent the “real behavior” of the process. Discov-
ery techniques can be used to mine a process model
on the basis of the behavior observed in the event data
(cf. [36]). Here, we stay independent of the specific nota-
tions and algorithms. Examples of algorithms are the Al-
pha Miner [43], the Heuristics Miner [50] or, more recent
techniques like the Inductive Miner [24]. This building
block represents the functionality of discovering a pro-
cess model from event data. This block, as many others,
can receive a set of parameters as an input to customize
the application of the algorithms.

Select process model from collection ( SelectM). Organi-
zations can be viewed as a collection of processes and
resources that are interconnected and form a process
ecosystem. This collection of processes can be managed
and supported by different approaches, such as ARIS [30]
or Apromore [23]. To conduct certain analyses, one needs
to use some of these models and not the whole collec-
tion. In addition, one can give a criterion to retrieve a
subset of the collection. This building block represents
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Fig. 5: Process-mining building blocks related to process
model analysis

the functionality of selecting one or more process models
from a process-model collection.

3.4 Process model analysis

Organizations normally use process models for the dis-
cussion, configuration and implementation of processes.
In recent years, many process mining techniques are also
using process models for analysis. This category groups
process-mining building blocks that can analyze process
models and provide analysis results. Figure 5 shows some
process-mining building blocks that belong to this cate-
gory.

Analyze process model ( AnalyzeM). Process models may
contain a number of structural problems. For instance,
the model may exhibit undesired deadlocks, activities
that are never enabled for execution, variables that used
to drive decisions without previously taking on a value,
etc. Several techniques have been designed to verify the
soundness of process models against deadlocks and other
problems [42]. This building block refers to design-time
properties: the process model is analyzed without con-
sidering how the process instances are actually being ex-
ecuted. The checking of the conformance of the process

model against real event data is covered by the next
building block (EvaluaM ). Undesired design-time prop-
erties happen for models designed by hand but also for
models automatically mined from event data. Indeed,
several discovery techniques do not guarantee to mine
process models without structural problems. This build-
ing block provides functionalities for analyzing process
models and detecting structural problems.

Evaluate process model using event data ( EvaluaM).
Besides structural analysis, process models can also be
analyzed against event data. Compared with the previ-
ous building block (AnalyzeM ), this block is not con-
cerned with a design-time analysis. Conversely, it makes
a-posteriori analysis where the adherence of the process
model is checked with respect to the event data, namely
how the process has actually been executed. In this way,
the expected or normative behavior as represented by
the process model is checked against the actual behavior
as recorded in event data. In literature, this is referred to
as conformance checking (cf. [36]). This can be used, for
example, in fraud or anomaly detection. Replaying event
data on process models has many possible uses: Aligning
observed behavior with modeled behavior is key in many
applications. For example, after aligning event data and
model, one can use the time and resource information
contained in the log for performance analysis. This can
be used for bottleneck identification or to gather infor-
mation for simulation analysis or predictive techniques.
This building block represents the functionality of ana-
lyzing or evaluating process models using event data.

Compare process models ( CompareM). Processes are
not static as they dynamically evolve and adapt to the
business context and requirements. For example, pro-
cesses can behave differently over different years, or at
different locations. Such differences or similarities can be
captured through the comparison of the corresponding
process models. For example, the degree of similarity can
be calculated. Approaches that explicitly represent con-
figuration or variation points [40] directly benefit from
such comparisons. Building block CompareM is often
used in combination with SplitED that splits the event
data in sublogs and DiscM that discovers a model per
sublog.

Analyze event data ( AnalyzeED). Instead of directly
creating a process model from event data, one can also
first inspect the data and look at basic statistics. More-
over, it often helps to simply visualize the data. For ex-
ample, one can create a so-called dotted chart [36] ex-
ploiting the temporal dimension of event data. Every
event is plotted in a two dimensional space where one
dimension represents the time (absolute or relative) and
the other dimension may be based on the case, resource,
activity or any other property of the event. The color
of the dot can be used as a third dimension. See [21]
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Fig. 6: Process-mining building blocks related to process
model transformations

for other approaches combining visualization with other
analytical techniques.

Generate report ( GenerR). To consolidate process mod-
els and other results, one may create a structured re-
port. The goal is not to create new analysis results, but
to present the findings in an understandable and pre-
dictable manner. Generating standard reports helps to
reduce the cognitive load and helps users to focus on the
things that matter most.

3.5 Process model transformations

Process models can be designed or, alternatively, discov-
ered from event data. Sometimes, these models need to
be adjusted for follow-up analyses. This category groups
process-mining building blocks that provide functional-
ity to change the structure of a process model. Figure 6
shows some process-mining building blocks that belong
to this category.

Repair process model ( RepairM). Process models may
need be repaired in case of consistency or conformance
problems. Repairing can be regarded from two perspec-
tives: repairing structural problems and repairing be-
havioral problems. The first case is related to the fact
that models can contain undesired design-time proper-
ties such as deadlocks and livelocks (see also the Analyze
process model building block discussed in Section 3.4).
Repairing involves modifying the model to avoid those
properties. Techniques for repairing behavioral problems
focus on models that are structurally sound but that al-
low for undesired behavior or behavior that does not
reflect reality. See also the Evaluate process model using
event data building block discussed in Section 3.4, which
is concerned with discovering the conformance problems.

Fig. 7: Process-mining building blocks related to process
model enhancement

This building block provides functionality for both types
of repairing.

Decompose process model ( DecompM). Processes run-
ning within organizations may be extremely large, in
terms of activities, resources, data variables, etc. As men-
tioned, many techniques are exponential in the num-
ber of activities. The computation may be improved by
splitting the models into fragments, analogously to what
mentioned for splitting the event log. If the model is split
according to certain criteria, the results can be some-
how amalgamated and, hence, be meaningful for the en-
tire model seen as a whole. For instance, the work on
decomposed conformance checking [38] discusses how to
split process model to make process mining possible with
models with hundreds of elements (such as activities,
resources, data variables), while preserving the correct-
ness certain results (e.g., the fraction of deviating cases
does not change because of decomposition). This block
provides functionalities for splitting process models into
smaller fragments.

Merge process models ( MergeM). Process models may
also be created from the intersection (i.e. the common
behavior) or union of other models. This building block
provides functionalities for merging process models into
a single process model. When process discovery is de-
composed, the resulting models need to be merged into
a single model.

3.6 Process model enhancement

Process models just describing the control-flow are usu-
ally not the final result of process mining analysis. Pro-
cess models can be enriched or improved using addi-
tional data in order to provide better insights about the
real process behavior that it represents. This category
groups process-mining building blocks that are used to
enhance process models. Figure 7 shows a summary of
the process-mining building blocks that belong to this
category.
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Enrich process model using event data ( EnrichM). The
backbone of any process models contains basic structural
information relating to control-flow. However, the back-
bone can be enriched with additional perspectives de-
rived from event data in to obtain better analysis results.
For example, event frequency can be annotated in a pro-
cess model in order to identify the most common paths
followed by process instances. Timing information can
also be used to enrich a process model in order to high-
light bottlenecks or long waiting times. This enrichment
does not have an effect on the structure of the process
model. This building block represents the functionality
of enriching process models with additional information
contained in event data.

Improve process model ( ImproveM). Besides being en-
riched with data, process models can also be improved.
For example, performance data can be used to suggest
structural modifications in order to improve the over-
all process performance. It is possible to automatically
improve models using causal dependencies and observed
performance. The impact of such modifications could be
simulated in “what-if scenarios” using performance data
obtained in previous steps. This building block repre-
sents the functionality of improving process models us-
ing data from other analysis results.

4 Analysis scenarios for process mining

This section reports generic analysis scenarios that are
not domain-specific and, hence, that can be applied to
different contexts. The analysis scenarios compose the
basic process-mining building blocks and, hence, they
remain independent of any specific operationalization of
a technique. In fact, as mentioned before, the building
blocks may employ different concrete techniques, e.g.,
there are dozens of process discovery techniques realizing
instances of building block DiscM (Figure 4).

As depicted in Figure 1, we consider four analysis
scenarios: (a) result (sub-)optimality, (b) parameter sen-
sitivity, (c) large-scale experiments, and (d) repeating
questions. These are described in the remainder of this
section.

As discussed in this section and validated in Sec-
tion 6, the same results could also be achieved without
using scientific workflows. However, the results would
require a tedious and error-prone work of repeating the
same steps ad nauseam.

4.1 Result (sub-)optimality

This subsection discusses how process-mining building
blocks can be used to mine optimal process model ac-
cording to some optimality criteria. Often, in process
discovery, optimality is difficult (or even impossible) to

achieve. Often sub-optimal results are returned and it is
no known what is “optimal”.

Consider for example the process discovery task. The
quality of a discovered process model is generally defined
by four quality metrics [1, 2, 36,39]:

– Replay fitness quantifies the ability of the process
model to reproduce the execution of process instances
as recorded in event data.

– Simplicity captures the degree of complexity of a
process model, in terms of the numbers of activities,
arcs, variables, gateways, etc.

– Precision quantifies the degree with which the model
allows for too much behavior compared to what was
observed in the event data.

– Generalization quantifies the degree with which
the process model is capable to reproduce behavior
that is not observed in the event data but that po-
tentially should be allowed. This is linked to the fact
that event data often are incomplete in the sense that
only a fraction of the possible behaviors can be ob-
served.

Traditionally, these values are normalized between 0 and
1, where 1 indicates the highest score and 0 the lowest.

The model of the highest value within a collection of
(discovered) models is such that it can mediate among
those criteria at best. Often, these criteria are in compet-
ing: higher score for one criterion may lower the score of
a second criterion. For instance, in order to have a more
precise model, it is necessary to sacrifice the behavior
observed in the event data that is less frequent, partly
hampering the replay-fitness score.

Later in this paper we will use an scoring criterion
that is the geometric average of replay fitness and preci-
sion. This is merely an example to illustrate this analy-
sis scenario. The geometric average of replay fitness and
precision seems to be better than the arithmetic average
since it is necessary to have a strong penalty if one of
the criteria is low.

Figure 8 shows a suitable scientific workflow for min-
ing a process model from event data that is sub-optimal
with respect to the geometric average of fitness and pre-
cision. The optimization is done by finding the parame-
ters that returns a sub-optimal model.

Event data is loaded from an information system and
used n times as input for a discovery technique using dif-
ferent parameter values. The n resulting process models
are evaluated using the original event data and the model
that scores higher in the geometric average is returned.
Please note that the result is likely to be sub-optimal:
n arbitrary parameter values are chosen out of a much
larger set of possibilities. If n is sufficiently large, the
result is sufficiently close to the optimal. This scientific
workflow is still independent of the specific algorithm
used for discovery; as such, the parameter settings are
also generic.
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Fig. 8: Result (sub-)optimality in process model discov-
ery: process-mining scientific workflow for mining an op-
timal model in terms of geometric average of replay fit-
ness and precision

Figure 9a illustrates a scientific workflow that tries
to account for generalization. For this purpose, a k-fold
cross validation approach is used. In this approach, the
process instances recorded in the event data are ran-
domly split into k folds, through building block Split
event data (SplitED). In each of the k times, a differ-
ent fold is taken aside: the other k − 1 folds are used
for discovery and the “elected” fold is used for evalu-
ation through conformance checking. This corresponds
to block Fold(i) with 1 ≤ i ≤ k. Finally, through the
process-mining building block Select process model from
collection (SelectM), the model with the best geometric
average is returned as output. Figure 9b enters inside the
block Fold(i) showing how fold Ei is used for evaluation
and folds E1, . . . , Ei−1, Ei+1, En are used for discovery
(after being merged).

Scientific workflows can also be hierarchically defined:
in turn, the discover process-mining building block (DiscM)
in Figure 8 can be an entire scientific sub-workflow. The
two scientific workflows shown in Figures 8 and 9 do
not exclude each other. Process-mining building block
Discover process model from event data (DiscM) can be
replaced by the entire workflow in Figure 9a, thus in-
cluding some generalization aspects in the search for a
sub-optimal process model.

4.2 Parameter sensitivity

Parameters are used by techniques to customize their be-
havior, e.g., adapting to the noise level in the event log.
These parameters have different ways of affecting the
results produced, depending on the specific implemen-

(a) Main workflow

(b) Process-mining sub-workflow for macro-block Fold(i)

Fig. 9: Process-mining main scientific workflow based on
k-fold cross validation
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Fig. 10: Parameter sensitivity in process discovery tech-
niques: process mining workflow for comparing the ef-
fects of different parameter values for a given discovery
technique.

tation of the technique or algorithm. Some parameters
can have more relevance than others (i.e., they have a
more substantial effect on the results). There are many
ways to evaluate the sensitivity of a certain parameter
for a given algorithm. Figure 10 shows an example of
this analysis scenario. Now the parameter value is var-
ied across the range. For each of the discovered models,
the average of precision and generalization is computed.
The results are finally plotted on a Cartesian coordinate
system where the X-axis is associated with the potential
parameter’s values and the Y-axis is associated with the
geometric average of precision and generalization.

Alternatively, the sensitivity analysis can also focus
on the filtering part, while keeping the same configu-
ration of parameter(s) for discovery. In other words, we
can study how the discovered model is affected by differ-
ent filtering, namely different values of the parameter(s)
that customize the application of filtering.

Fig. 11 shows an example of this analysis scenario
in the process mining domain, by using process-mining
building block to analyze the differences and similarities
of results obtained by discovery techniques from event
data that was filtered using different parameter values.
In this example, event data is loaded and filtered several
times using different parameter settings, producing sev-
eral filtered event data sets. Each of these filtered event
data sets is input for the same discovery technique using
the same configuration of parameter(s).

4.3 Large-scale experiments

Empirical evaluation is often needed (and certainly rec-
ommended) when testing new process mining algorithms.
In case of process mining, many experiments need to be
conducted in order to prove that these algorithms or
techniques can be applied in reality, and that the results

Fig. 11: Parameter sensitivity in event data filtering:
process-mining scientific workflow for comparing the ef-
fect of different event-data filtering configurations on the
discovered model.

are as expected. This is due to the richness of the do-
main. Process models can have a wide variety of routing
behaviors, timing behavior, and second-order dynamics
(e.g., concept drift). Event logs can be large or small
and contain infrequent behavior (sometimes called noise)
or not. Hence, this type of evaluation has to be con-
ducted on a large scale. The execution and evaluation
of such large-scale experiment results is a tedious and
time-consuming task: it requires intensive human assis-
tance by configuring each experiment’s run and waiting
for the results at the end of each run.

This can be greatly improved by using process min-
ing workflows, as only one initial configuration is re-
quired. There are many examples for this analysis sce-
nario within the process mining domain. Two of them
are presented next.

4.3.1 Assessment of discovery techniques through
massive testing

When developing new process discovery techniques, sev-
eral experiments have to be conducted in order to test
the robustness of the approach. As mentioned, many dis-
covery techniques use parameters that can affect the re-
sult produced. It is extremely time-consuming and error
prone to assess the discovery techniques using several
different combinations of parameter values and, at the
same time, testing on a dozen of different event-data
sets.

Figure 12 shows the result of a large-scale experiment
using n event data sets and m different parameter set-
tings that produces n ×m resulting process models. In
this example, the same discovery technique with differ-
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Fig. 12: Exhaustive testing of a discovery technique:
Large-scale experiments using different types of event
data and parameter combinations are needed to evalu-
ate a discovery technique

ent parameters is used. However, one can consider the
discovery algorithm to employ as an additional param-
eter. Therefore, the m different parameter settings can
indicate m different discovery algorithms. After mining
n×m models, the best model is considered.

4.3.2 Decomposed process discovery

Existing process mining techniques are often unable to
handle “big event data” adequately. Decomposed pro-
cess mining aims to solve this problem by decomposing
the process mining problem into many smaller problems,
which can be solved in less time and using less resources.

In decomposed process discovery, large event data
sets are decomposed in sublogs, each of which refers to
a subset of the process’ activities. Once an appropriate
decomposition is performed, the discovery can be applied
to each cluster. The results in as many process models as
the number of clusters; these models are finally merged
to obtain a single process model. See for example the
decomposed process mining technique described in [48]
which presents an approach that clusters the event data,
applies discovery techniques to each cluster, and merges
the process models.

Figure 13 shows a process-mining workflow that splits
the event data into n subsets, then uses a discovery algo-
rithm to discover models for each of these subsets, and
finally merges them into a single process model.

4.4 Repeating questions

Whereas the previous scenarios are aimed at (data) sci-
entists, process mining workflows can also be used to
lower the threshold for process mining. After the process
mining workflow has been created and tested, the same
analysis can be repeated easily using different subsets of
data and different time-periods. Without workflow sup-
port this implies repeating the analysis steps manually
or use hardcoded scripts that perform them over some

Fig. 13: Decomposed process discovery: a generic exam-
ple using event data splitting, model composition and a
specified discovery technique.

input data. The use of scientific workflows is clearly ben-
eficial: the same workflow can be replayed many times
using different inputs where no further configuration is
required.

There are many examples for this analysis scenario
within the process-mining domain. Two representative
examples are described next.

4.4.1 Periodic benchmarking

Modern organizations make large investments to improve
their own processes: better performance in terms of costs,
time, or quality. In order to measure these improvements,
organizations have to evaluate their performance period-
ically. This requires them to evaluate performance of the
new time-period and compare it with the previous pe-
riods. Performance can improve or degrade in different
time-periods. Obviously, the returned results require hu-
man judgments and, hence, cannot be fully automated
by the scientific workflow.

Figure 14 shows an example of this analysis scenario
using different process-mining building blocks. Let us as-
sume that we want to compare period τk with period
τk−1. For period τk, the entire event data is loaded and,
then, is filtered so as to only keep portion Eτk that refers
to the period τk only. Using portion Eτk , a process model
Mτk is discovered. For period τk−1, the entire event data
is loaded and, then, is filtered so as to only keep the
portion Eτk−1

that refers to the period τk−1. Finally, an
evaluation is computed about the conformance between
model Mτk and event-data portion Eτk and between Mτk
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Fig. 14: Periodic performance benchmark: Process min-
ing workflow for comparing the performance of the pro-
cess in two different time-periods (t and t− 1).

and Eτk−1
. Each evaluation will return valuable results,

which are compared to find remarkable changes.

4.4.2 Report generation over collections of data sets

Scientific workflows are very handy when generating sev-
eral reports for different portions of event data, e.g., dif-
ferent groups of patients or customers. Since the steps
are the same and the only difference is concerned with
using different portions of events, this can be easily au-
tomated, even when dozens of subsets need to be taken
into consideration.

From this, it follows that this scenario shares com-
mon points with large-scale experiments. However, some
differences exist. The report-generation scenario is char-
acterized by a stable workflow with a defined set of
parameters, whereas in the large-scale experiments sce-
nario, parameters may change significantly in the differ-
ent iterations. In addition to that, the input elements
used in report-generation scenarios are similar and com-
parable event data sets. This can be explained by the
desire that reports should have the same structure. In
case of large-scale experiments, event data sets may be
heterogenous. It is actually worthwhile repeating the ex-
periments using diverse and dissimilar event data sets as
input.

Fig. 15: Report Generation workflow

Figure 15 illustrates a potential scientific workflow to
generate reports that contain process-mining results. For
the sake of explanation, the process mining workflow is
kept simple. The report is assumed to contain only three
objects: the result RED of the analyze of the input event
data, the discovered process model M and the results
RM of the evaluation of such a model against the in-
put event data. Process-mining building block Generate
report takes these three objects as input and combines
them into a reporting document R.

5 Implementation

Our framework to support process mining workflows
shown in Figure 1 is supported by RapidProM. Rapid-
ProM was implemented using ProM and RapidMiner.
The building blocks defined in Section 3 have been con-
cretely implemented in RapidProM. Most of the build-
ing blocks have been realized using RapidMiner-specific
wrappers of plug-ins of the ProM Framework [47]. ProM
is a framework that allows researchers to implement pro-
cess mining algorithms in a standardized environment,
which provides a number of facilities to support pro-
grammers. Nowadays, it has become the de-facto stan-
dard for process mining. ProM can be freely downloaded
from http://www.promtools.org. The extension of Ra-
pidMiner to provide process-mining blocks for scientific
workflows using ProM is also freely available. At the time
of writing, RapidProM provides 37 process mining op-
erators, including several process-discovery algorithms
and filters as well as importers and exporters from/to
different process-modeling notations.

http://www.promtools.org
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The first version of RapidProM was presented dur-
ing the BPM 2014 demo session [28]. This initial version
successfully implemented basic process-mining function-
alities and has been downloaded 4020 times since its re-
lease in July 2014 until April 2015 (on average, over 400
monthly downloads). However, process mining is a rel-
atively new discipline, which is developing and evolving
very fast. Therefore, various changes and extensions were
needed to keep up with the state-of-the-art. The new
version incorporates implementations of various new al-
gorithms, which did not exist in the first version.

The RapidProM extension is hosted both at http:

//www.rapidprom.org and in the RapidProM extension
manager server, which can be directly accessed through
the RapidMiner Marketplace. After installation, the Rapid-
Miner operators are available for use in any RapidMiner
workflow. Figure 16 shows an example of a process-mining
scientific workflow implemented using RapidProM.

Readers are referred to http://www.rapidprom.org

for detailed installation, setup and troubleshooting in-
structions.

Table 1 shows the ProM import plugins implemented
in RapidProM Version 2. These five operators are com-
plemented with RapidMiner native operators to export
visual results and data tables, in a way that most final
results of process mining workflows can be exported and
saved outside RapidMiner.

Operator Name Operator Description

Read Log (path) Imports an event log from a speci-
fied path

Read Log (file) Takes a file object (usually obtained
from a ”loop files” operator) and
transforms it to an Event Log

Read PNML Imports a Petri Net from a specified
path

Export Event
Log

Exports an Event Log in different
formats

Export PNML Exports a Petri Net in PNML for-
mat

Table 1: Import/Export Operators

Table 2 shows a list of ProM Discovery plugins im-
plemented in RapidProM as Discovery Operators. These
nine operators (usually referred to as miners) are the
most commonly used discovery techniques for process
mining. These discovery operators produce different mod-
els using different techniques and parameters to fine-tune
the resulting model.

Table 3 shows a list of ProM visualization plugins
implemented in RapidProM as visualization operators.
These four visualization plugins are accompanied by ren-
derers that allow one to inspect both intermediate and
final results during and after the execution of process
mining workflows.

Operator Name Operator Description

Alpha Miner Discovers a Petri Net. Fast but re-
sults are not always reliable because
of overfitting issues

ILP Miner Discovers a Petri Net by solving
ILP problems. Result have perfect
fitness but generally poor precision.
Slow on large Logs

Genetic Miner Discovers a Heuristics Net using ge-
netic algorithms. Depending on the
parameter settings it can be slow or
fast

Evolutionary
Tree Miner

Discovers a Process Tree using a
guided genetic algorithms based on
model quality dimensions. Guaran-
tees soundness but cannot repre-
sent all possible behavior due to its
block-structured nature

Heuristics
Miner

Discovers a Heuristics Net using a
probabilistic approach. Good when
dealing with noise. Fast

Inductive Miner Discovers a Process Tree or Petri
Net. Good when dealing with in-
frequent behavior and large Logs.
Soundness is guaranteed

Social Network
Miner

Discovers a Social Network from the
Event Log resources. Different So-
cial Networks can be obtained: sim-
ilar task, handover of work, etc.

Transition
System Miner

Discovers a Transition System us-
ing parameters to simplify the
space-state exploration.

Fuzzy Miner Discovers a Fuzzy Model. Good
when dealing with unstructured be-
havior. Fast

Table 2: Discovery Operators

Operator Name Operator Description

Dotted Chart Shows the temporal distribution of
events within traces

Inductive Visual
Miner

Process exploration tool that shows
an annotated interactive model for
quick exploration of a Log

Animate Log in
Fuzzy Instance

Shows an animated replay of a Log
projected over a Fuzzy Instance

PomPom Petri Net visualizer that empha-
sizes those parts of the process that
correspond to high-frequent events
in a given Log

Table 3: Visualization Operators

Table 4 shows a list of ProM conversion plugins im-
plemented in RapidProM as conversion operators. These
four conversion plugins are intended for converting mod-
els into other model formats. This way we improve the
chances that a produced model can be used by other
operators. For example, if a heuristics net is discovered

http://www.rapidprom.org
http://www.rapidprom.org
http://www.rapidprom.org
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Fig. 16: Process Mining Workflows in RapidMiner through the RapidProM extension

from an Event Log using the Heuristics Miner, then the
Replay Log on Petri Net (Conformance) operator cannot
be executed unless a conversion to Petri Net is performed
(which is supported).

Operator Name Operator Description

Reachability
Graph to
Petri Net

Converts a Reachability Graph into
a Petri Net

Petri Net to
Reachability
Graph

Converts a Petri Net into a Reach-
ability Graph

Heuristics Net
to Petri Net

Converts a Heuristics Net into a
Petri Net

Process Tree to
Petri Net

Converts a Process Tree into a Petri
Net

Table 4: Conversion Operators

Table 5 shows a list of log processing operators imple-
mented in RapidProM. Some of these eight operators use
ProM functionalities to perform their tasks, but others
were developed specifically for RapidProM, as the ProM
framework generally does not use flat data tables to rep-
resent event data. These operators are used to modify

an event log by adding attributes, events, or converting
it to data tables, and vice versa.

Table 6 shows a list of ProM plugins implemented in
RapidProM as analysis operators.

6 Evaluation

This section shows a number of instantiations of scien-
tific workflows in RapidProM, highlighting the benefits
of using scientific workflows for process mining. They are
specific examples of the analysis scenarios discussed in
Section 4

6.1 Evaluating result optimality

The first experiment is related to Result Optimality. In
this experiment, we implemented a process mining work-
flow using RapidProM to extract the model that scores
higher with respect to the geometric average of preci-
sion and replay fitness. For this experiment, we employed
the Inductive Miner - Infrequent discovery technique [24]
and used different values for the noise threshold param-
eter. This parameter is defined in a range of values be-
tween 0 and 1. This parameter allows for filtering out
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Operator Name Operator Description

Add Table
Column to
Event Log

Adds a single Data Table column as
trace attribute to a given Event Log

Add Trace
Attributes to
Event Log

Adds all columns of a Data Table
(except case id) as trace attributes
to a given Event Log

Add Event
Attributes to
Event Log

Adds all columns of a Data Table
(except case id and event id) as
event attributes to a given Event
Log

Add Events to
Event Log

Adds Events to a given Event Log
from selected columns on a Data
Table

Merge Event
Logs

Merges two Event Logs

Add Artificial
Start and End
Event

Adds an artificial Start Event to
the beginning, and an artificial End
Event to the ending of each trace

Event Log to
ExampleSet

Converts an Event Log into a Data
Table (ExampleSet)

ExampleSet to
Event Log

Converts a Data Table (Example-
Set) into an Event Log

Table 5: Log Processing Operators

Operator Name Operator Description

WOFLAN Analyzes the soundness of a Petri
Net

Select Fuzzy
Instance

Selects the best fuzzy instance from
a Fuzzy Model

Repair Model Replays an Event Log in a Petri Net
and repairs this net to improve fit-
ness.

Reduce Silent
Transitions

Reduces a Petri Net by removing in-
visible transitions (and places) that
are not used

Feature
Prediction

Produces predictions of business
process features using decision trees

Replay Log on
Petri Net
(Performance)

Replays a Log on a Petri Net and
generates performance metrics such
as throughput time, waiting time,
etc.

Replay Log on
Petri Net
(Conformance)

Replays a Log on a Petri Net and
generates conformance metrics such
as fitness

Table 6: Analysis Operators

infrequent behavior contained in event data in order to
produce a simpler model: the lower the value is for this
parameter (i.e., close to 0), the larger the fraction of
behavior observed in the event data that the model al-
lows. To measure fitness and precision, we employ the
conformance-checking techniques reported in [1, 2]. All
techniques are available as part of the RapidProM ex-
tension.

This experiment instantiates the analysis scenario
described in Section 4.1 and depicted in Figure 8. The

model obtained with the default value of the parameter
is compared with the model that (almost) maximizes
the geometric average of fitness and precision. To obtain
this result, we designed a scientific workflow where sev-
eral models are discovered with different values of the
noise threshold parameter. Finally, the workflow selects
the model with the highest value of the geometric aver-
age among those discovered. As input, we used an event-
data log that records real-life executions of a process for
road-traffic fine managements, which is employed by a
local-police force in Italy [11]. This event data refers to
150370 process-instance executions and records the exe-
cution of around 560000 activities.

Figure 17b shows the model obtained through our
scientific workflow, whereas Figure 17a illustrates the
model generated using default parameters.

There are clear differences between the models. For
example, in the default model, parallel behavior domi-
nates the beginning of the process. Instead, the “optimal
model” presents simpler choices. Another example con-
cerns the final part of the model. In the default model,
the latest process activities can be skipped through. How-
ever, in the optimal model, this is not possible. The op-
timal model has a replay fitness and precision of 0.921
and 0.903 respectively, with geometric average 0.912. It
scores better than the model obtained through default
parameters, where the replay fitness and precision is 1
and 0.548, respectively, with geometric average 0.708.
The optimal model was generated with value 0.7 for the
noise threshold parameter.

6.2 Evaluating parameter sensitivity

As second experiment illustrating the benefits of using
scientific workflows for process mining, we conducted an
analysis of the sensitivity of the noise threshold param-
eter of the Inductive Miner - infrequent. We used again
the event data of the road-traffic fine management pro-
cess also used in Section 6.1. This experiment opera-
tionalizes the analysis scenario discussed in Section 4.2
and depicted in Figure 10. In this experiment, we imple-
mented a process mining workflow using RapidProM to
explore the effect of this parameter in the final quality
of the produced model. In order to do so, we discovered
41 models using different parameter values between 0
and 1 (i.e., a step-size 0.025) and evaluated their qual-
ity through the geometric average of replay fitness and
precision used before.

Figure 18 shows the results of these evaluations, show-
ing the variation of the geometric average for different
values of the noise threshold parameter.

By analyzing the graph, the models with higher geo-
metric average are produced when the parameter takes
on a value between 0.675 and 0.875. The worst model is
obtained when value 1 is assigned to the parameter.
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(a) Model mined using the default value of the noise-threshold parameter, which is 0.2. The geometric average is 0.708

(b) Model mined using one of the best values of the noise-threshold parameter, which is 0.7. The geometric average is 0.912

Fig. 17: Comparison of process models that are mined with the default parameters and with the parameters that
maximize the geometric average of replay fitness and precision. The process is concerned with road-traffic fine
management and models are represented using the BPMN notation.

Fig. 18: Parameter sensitivity analysis: Variation of the
geometric average of fitness and precision when varying
the value of the noise threshold parameter.

6.3 Performing large scale experiments

As mentioned before, the use of scientific workflows is
very beneficial for conducting large-scale experiments
with many event logs. When assessing a certain process-
mining technique one cannot rely on a single event log
to draw conclusions.

For instance, here we want to study how the noise
threshold parameter influences the quality of the discov-
ered model, in term of geometric average of fitness and
precision. In Section 4.2, the experiment was conducted
using a single event log, but RapidProM allows us to do
this for any number of event logs. To illustrate this, we
use 11 real-life event logs and produce the corresponding
process models using different parameter settings.

Table 7 shows the results of this evaluation, where
each cell shows the geometric average of the replay fit-
ness and the precision of the model obtained using a
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Event data nt=0 nt=0.1 nt=0.2 nt=0.3 nt=0.4 nt=0.5 nt=0.6 nt=0.7 nt=0.8 nt=0.9 nt=1 Average

BPI2012 [45] 0.314 0.730 0.430 0.450 0.508 0.474 0.675 0.683 0.674 0.679 0.644 0.569
BPI2013 [32] 0.847 0.826 0.778 0.863 0.458 0.458 0.458 0.458 0.458 0.458 0.453 0.592
BPI2014 [46] 0.566 0.720 0.708 0.613 0.616 0.654 0.626 0.414 0.530 0.527 0.490 0.588
Hospital [44] 0.153 0.111 0.546 0.473 0.338 0.172 0.280 0.342 0.392 0.515 0.517 0.349

Road Fines [11] 0.689 0.633 0.708 0.721 0.909 0.909 0.744 0.912 0.912 0.710 0.498 0.758
CoSeLoG 1 [5] 0.143 0.366 0.389 0.576 0.687 0.710 0.737 0.668 0.673 0.649 0.594 0.563
CoSeLoG 2 [6] 0.095 0.191 0.146 0.233 0.127 0.167 0.250 0.177 0.218 0.180 0.362 0.195
CoSeLoG 3 [7] 0.182 0.352 0.573 0.640 0.170 0.209 0.628 0.632 0.585 0.732 0.657 0.487
CoSeLoG 4 [8] 0.190 0.448 0.488 0.640 0.623 0.163 0.553 0.621 0.546 0.518 0.670 0.496
CoSeLoG 5 [9] 0.160 0.199 0.445 0.517 0.522 0.628 0.634 0.145 0.246 0.222 0.602 0.393

CoSeLoG R. [10] 0.520 0.860 0.838 0.869 0.859 0.377 0.868 0.868 0.883 0.861 0.656 0.769

Average 0.350 0.494 0.549 0.599 0.528 0.447 0.586 0.538 0.556 0.550 0.558

Table 7: Summary of a few large-scale experimental results: Evaluating the geometric average of replay fitness and
precision of models discovered with the Inductive Miner using different values of the noise threshold parameter
(columns) and different real-life sets of event data (rows). We use nt to indicate the value of the noise threshold
parameter of application of the algorithm.

specific parameter value (column) and event data (row).
Every event log used in this experiment is publicly avail-
able through the Digital Object Identifiers (DOIs) of the
included references. To use some of them for discovery,
we had to conduct some pre-processing (depending on
the specifics of the event data).

The hospital event data set [44] was extremely un-
structured. To provide reasonable results and to allow
for conformance checking using alignments, we filtered
the event log to retain the 80% most frequent behav-
ior before applying the mining algorithm. The same was
done for the five CoSeLog event logs [5–9].

The actual results in Table 7 are not very relevant
for this paper. It just shows that techniques can be eval-
uated on a large scale by using scientific workflows.

6.4 Automatic report generation

To illustrate the fourth analysis scenario we used event
data related to the study behavior and actual perfor-
mance of students of the Faculty of Mathematics and
Computer Science at Eindhoven University of Technol-
ogy (TU/e). TU/e provides video lectures for many courses
to support students who are unable to attend face-to-
face lectures for various reasons. The event data record
the views of video lectures and the exam attempts of all
TU/e courses.

First of all, students generate events when they watch
lectures. It is known how long and when they watch a
particular lecture of a particular course. These data can
be preprocessed so that low-level events are collapsed
into lecture views. Second, students generate events when
they make exams and the result is added to the event.

For each course, we have generated a report that
includes the results of the application of various data-
mining and process-mining techniques. This generation
is automatic in the sense that the scientific workflow
takes a list of courses as input and produces as many
reports as the number of course in the list.

The report contains three sections: course informa-
tion, core statistics and advanced analysis.

Figure 19 shows a small part of the report gener-
ated for the course on Business Information Systems
(2II05). In the first section, the report provides infor-
mation about the course, the bachelor or master pro-
grams which it belongs to, as well as the information
about the overall number of views of the course’s video
lectures. In the second section (only small fragment is
shown), some basic distributions are calculated. For ex-
ample, statistics are reported about the division per gen-
der, nationality and final grade. The third section is de-
voted to process mining results. The results of applying
conformance checking using the event data and the ideal
process model where a student watches every video lec-
ture and in the right order, namely he/she watches the
ith video lecture only after watching the (i− 1)th video
lecture. As expected, the results show a positive correla-
tion between higher grades and higher compliance with
the normative process just mentioned: The more a stu-
dent watches all video lectures in the right order, the
higher the corresponding grade will be. In addition to
showing the conformance information, the report always
embeds a dotted chart. The dotted chart is a similar to a
Gannt chart, see building block AnalyzeED. The dotted
chart shows the distribution of events for the different
students over time. This way one can see the patterns
and frequency with which students watch video lectures.

Note that reports like the one shown in Figure 19
are very informative for both professors and students.
By using RapidProM we are able to automatically gen-
erate reports for all courses (after data conversion and
modeling the desired process mining workflow).

7 Conclusions

This paper presented a framework for supporting the
design and execution of process mining workflows. As
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Fig. 19: Fragments of the automatically generated report using RapidProM

argued, scientific workflow systems are not tailored to-
wards the analysis of processes based on models and logs.
Tools like RapidMiner and KNIME can model analysis
workflows but do not provide any process mining ca-
pabilities. The focus of these tools is mostly on tradi-
tional data mining and reporting capabilities that tend
to use tabular data. Also more classical Scientific Work-
flow Management (SWFM) systems like Kepler and Tav-
erna do not provide dedicated support for artifacts like
process models and event logs. Process mining tools like
ProM, Disco, Perceptive, Celonis, QPR, etc. do not pro-
vide any workflow support. The inability to model and
execute process mining workflows was the primary mo-
tivation for developing the framework presented in this
paper.

We proposed generic process mining building blocks
grouped into six categories. These can be chained to-
gether to create process mining workflows. We identified
four broader analysis scenarios and provided conceptual
workflows for these. The whole approach is supported
using RapidProM which is based on ProM and Rapid-
Miner. RapidProM has been tested in various situations
and in this paper we demonstrated this using concrete
instances of the four analysis scenarios. RapidProM is
freely available via http://www.rapidprom.org and the
RapidMiner Market place.

Future work aims at extending the set of process
mining building blocks and evaluating RapidProM in

various case studies. We continue to apply RapidProM
in all four areas described. Moreover, we would like to
make standard workflows available via infrastructures
like myExperiment and OpenML. We are also interested
a further cross-fertilizations between process mining and
other analysis techniques available in tools like Rapid-
Miner and KNIME (text mining, clustering, predictive
analytics, etc.).
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