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Abstract. The goal of process discovery is to learn a process model based on
example behavior recorded in an event log. Region-based process discovery tech-
niques are able to uncover complex process structures (e.g., milestones) and, at
the same time, provide formal guarantees w.r.t. the model discovered. For exam-
ple, it is possible to ensure that the discovered model is able to replay the event
log and that there are bounds on the amount of additional behavior allowed by the
model that is not present in the event log. Unfortunately, region-based discovery
techniques cannot handle exceptional behavior. The presence of a few exceptional
traces may result in an incomprehensible model concealing the dominant behav-
ior observed. Hence, despite their promise, region-based approaches cannot be
applied in everyday process mining practice. This paper addresses the problem
by proposing two filtering techniques tailored towards ILP-based process dis-
covery (an approach based on integer linear programming and language-based
region theory). Both techniques help to produce models that are less over-fitting
w.r.t. the event log and have been implemented in ProM. One of the techniques
is also feasible in real-life settings as it, in most cases, reduces computation time
compared to conventional region-based techniques. Additionally the technique is
able to produce understandable process models that better capture the dominant
behavior present in the event log.

Keywords: Process mining, process discovery, integer linear programming, fil-
tering

1 Introduction

Process mining [1] aims to assist in the improvement and understandability of busi-
ness processes. Within the field, three main branches are identified. Process discovery
aims at the construction of a process model given an event log. Conformance checking
aims at assessing the conformance of an event log to a given process model. Process
enhancement aims at extending, improving or repairing an existing process model us-
ing the two aforementioned disciplines as a basis. In process mining, a process model’s
quality is typically evaluated w.r.t. four essential quality dimensions [2]. Replay fitness
describes to what extent the discovered model is able to reproduce the behavior present
in the event log. Precision describes what fraction of the behavior allowed by the model
is present in the event log. Generalization describes to what extent the model is able to
reproduce future, unseen behavior of the process. Simplicity of a model describes the
(perceived) complexity of the resulting model.
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Region-based process discovery originates from the area of Petri net synthesis [3].
Within Petri net synthesis the main problem is deciding whether there exists a Petri
net that exactly describes a given sequential behavioral system description. Two classes
of region-based approaches exist: state-based and language-based. By nature, classical
region-based techniques discover models that have perfect replay-fitness and very high
precision. As a consequence, the models are often extremely complex and severely over-
fitting w.r.t. the event log.

In the language-based region approach, a set of linear inequalities based on the
event log is used as a basis. A technique to solve a body of linear inequalities is Integer
Linear Programming (ILP). When applying ILP, we do not only find a feasible solution
to the set of inequalities (if such solution exists) but additionally we find the optimal
one, given some objective function. In [4] an algorithm was proposed that combines
ILP, based on language-based region theory, with causal relations between activities
present in the event log. By using causal relations, the algorithm tries to tackle the over-
fitting behavior of classical language-based region techniques whilst preserving perfect
replay-fitness.

The ILP-based process discovery algorithm works well under the assumption that
the event log only holds frequent behavior. Real event logs however typically also in-
clude low-frequent exceptional behavior. Such behavior may be caused by people devi-
ating from some normative process (if this exists). Moreover, some cases may require
special treatment and people may solve unexpected issues in an ad-hoc fashion. Show-
ing all irregularities together with the “normal behavior” yields incompressible mod-
els. The presence of exceptional behavior in event logs impacts the result of applying
the ILP-based process discovery algorithm significantly. As the algorithm guarantees
perfect replay-fitness, it guarantees that the resulting model allows for all exceptional
behavior present in the event log. In practice this leads to models that are incapable of
capturing the dominant behavior present in the event log.

To leverage the strict replay-fitness guaranteed by the ILP-based process discovery
algorithm we present two filtering techniques, tightly coupled to the algorithm’s ILP
formulation. One of the techniques extends the basic ILP formulation whereas the other
approach exploits the underlying data abstraction used within the ILP formulation. Us-
ing simple examples we show that both approaches enable us to filter exceptional be-
havior from event logs and result in models that do not have perfect replay-fitness w.r.t.
the input data. However, the models are simpler and less over-fitting. Moreover, the data
abstraction based filtering technique is also applicable on realistically sized event logs
in terms of computation time. To evaluate the technique we have applied it on a set of
artificially generated event logs with varying levels of exceptional behavior.

The outline of this paper is as follows. In Section 2 we motivate the need for a
region-based technique able to cope with the presence of exceptional behavior. In Sec-
tion 3 we present the basics of ILP-based process discovery in an informal fashion. In
Section 4 we introduce two new integrated ILP filtering techniques. In Section 5 we
evaluate the data abstraction based approach in terms of its effects on model quality
and computation time. Section 6 concludes the paper.
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2 Motivation

The ILP-based process discovery algorithm uses Petri nets1 as a process model for-
malism. The representational bias of Petri nets, i.e. the (practical) limitations of the
process model of choice, still allows for expressing complex patterns within event data,
a very valuable property from a business management perspective. Many process dis-
covery algorithms however use process model formalisms with a different representa-
tional bias, i.e. they assume models to be structured or assume that there are only local
dependencies amongst activities (e.g., subclasses of free-choice nets). As an example
consider the two Petri nets depicted in Figure 1, depicting the results of both the ILP-
based process discovery algorithm as the Inductive Miner [5,6] on the simple event log
L = [〈a, c, d, e, f〉10, 〈a, c, b, d, f〉10, 〈a, c, e, d, f〉10, 〈a, e, c, d, f〉10]2. The event log
contains behavior that is generated by a model that exhibits a milestone pattern [7]. The
milestone pattern enforces that transition b can only fire if transition c has fired. More-
over transition b can only fire if transitions e and/or d did not fire. Finally, if transition
b fires, transition e can no longer fire. The ILP-based discovery algorithm allows us to
discover the milestone pattern whereas the inductive miner clearly neglects the pattern
and results in a rather under-fitting Petri net. Other techniques such as the Heuristics
miner [8], the Fuzzy miner [9] and the Genetic miner [10], like the Inductive Miner,
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(a) Process discovery result of the ILP-based algorithm.
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(b) Process discovery result of Inductive Miner [5, 6].

Fig. 1: Petri nets discovered using the ILP-based process discovery algorithm and the
Inductive miner, based on a log that consists of behavior generated by a milestone pat-
tern.

1In this paper we assume the reader to be generally acquainted with the concepts of event
logs and Petri nets. For a detailed description of both concepts we refer to [1]. In the remainder
of this paper when we use the term Petri net, we refer to a Petri net without arc weights unless
explicitly mentioned otherwise.

2For event logs we use the notion of a mutliset of traces, using a control-flow perspective.



4

suffer from the representational bias of the process model of choice and do not use the
right modeling formalism to capture this type of patterns.

The Petri nets discoverable by the ILP-based process discovery algorithm also suf-
fer from a form of representational bias. By nature of the underlying data abstraction
used, they do not allow for duplicate transition labels or the use of silent (invisible) tran-
sitions. A selection of patterns that the ILP-based process discovery algorithm is able
to reproduce are patterns like interleaved parallel routing, critical section and arbitrary
cycles. An example of patterns not supported by the ILP-based process discovery algo-
rithm are patterns related to OR-Split (i.e. non-exclusive) and Structured Synchronizing
Merge patterns [7].

The impact of exceptional behavior w.r.t. ILP-based process discovery becomes
apparent when regarding the two Petri nets depicted in Figure 2. Both Petri nets are
discovered using an implementation of the ILP-based process discovery algorithm in
the process mining framework ProM. The event log used to discover the Petri net in
Figure 2a does not contain exceptional behavior, i.e. it only consists of traces that fit

(a) Process discovery result of the ILP-based algorithm using an event log that does not contain
exceptional behavior.

(b) Process discovery result of the ILP-based algorithm using an event log that contains a minimal
amount of exceptional behavior.

Fig. 2: Discovered Petri nets after applying the ILP-based process discovery algorithm
on event logs with and without the presence of exceptional behavior.
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the Petri net presented. The event log used for discovery of the Petri net depicted in
Figure 2b is a slightly manipulated version of the event log corresponding to the Petri
net depicted in Figure 2a. The event log contains little exceptional behavior, i.e. 5% of
the traces in the event log is manipulated. Clearly, the Petri net depicted in Figure 2b is
not capturing the most dominant behavior present in the event log, caused by the strict
replay-fitness property guaranteed by the ILP-based process discovery algorithm. Thus,
the presence of only a minimal amount of exceptional behavior can greatly influence the
quality of the process models discovered by the ILP-based process discovery algorithm.

The strictness of the ILP-based process discovery algorithm enforces exceptional
behavior to be part of the resulting process models. Thus, removing exceptional behav-
ior comes as a natural next step as it enables the algorithm to discover models that more
accordingly represent the behavior present in the event log. Making use of the underly-
ing data abstraction of the ILP-miner, which is based on the prefix-closure of the event
log, provides the ability to filter based on prefixes of traces rather than on complete
traces only. In this way, filtering is applicable if all traces in an event log have equal or
very similar frequencies, yet differ in terms of the occurrence of their prefixes.

3 ILP-Based Process Discovery

3.1 Language-Based Region Theory

The fundamental requirement behind language-based region theory, which forms the
basis of ILP-based process discovery, is best explained by the following sentence: Any
place present in the resulting Petri net must allow each event in the input event log to
be executed.

Consider the simple event log L = [〈a, b, c, d, e, g〉10, 〈a, c, b, d, e, g〉10, 〈a, b, c, d,
e, f, e, g〉10, 〈a, c, b, d, e, f, e, g〉10] and a corresponding Petri net depicted in Figure 3.
Each place in the Petri net adheres to the aforementioned requirement of language-
based region theory, i.e., each place allows for the execution of each event present in the
event log. For example, consider place p5 having an incoming arc from transition c and
an outgoing arc to transition d. As place p5 is not having an outgoing arc to transitions
a, b, c, e, f and g it does not interfere with firing these transitions at any point in time.
The only outgoing arc of place p5 allows for firing d, only after firing transition c. This
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Fig. 3: A Petri net corresponding to L = [〈a, b, c, d, e, g〉10, 〈a, c, b, d, e, g〉10, 〈a, b, c, d,
e, f, e, g〉10, 〈a, c, b, d, e, f, e, g〉10] and adhering to the basic concept of language-based
regions.
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is in line with the event log because if event d occurs, it is always (indirectly) preceded
by event c.

The impact of exceptional behavior on language-based region theory becomes ap-
parent when we consider event log L′ = [〈a, b, c, d, e, g〉10, 〈a, c, b, d, e, g〉10, 〈a, b, c,
d, e, f, e, g〉10, 〈a, c, b, d, e, f, e, g〉10, 〈a, b, d, e, f, e, g〉]. Event log L′ consists of one
exceptional trace w.r.t. event log L, being 〈a, b, d, e, f, e, g〉. Given L′ we identify that
place p5 is no longer an acceptable place w.r.t. language-based region theory. This is
due to the fact that place p5 only allows for firing transition d after transition c has fired.
Thus place p5 does not allow for event d in the newly added exceptional trace 〈a, b, d, e,
f, e, g〉. If we are explicitly interested in finding a place that connects transitions c and
d we should at least add an incoming arc to p5, either from transition a or from transi-
tion b, to make the place acceptable again w.r.t. language-based region theory. From a
process discovery perspective however, the Petri net depicted in Figure 3, which is not
discoverable using the conventional ILP-based process discovery algorithm when using
event log L′ as an input, is an adequate and possibly most desired representation of the
behavior captured in L′.

3.2 Applying Discovery

Given an event log it is straightforward to construct linear inequalities over a set of de-
cision variables which express the previously described requirement of language-based
regions. The linear inequalities allow us to decide whether a place may be added to the
resulting Petri net. As identified in [4], the linear inequalities in turn lend themselves
perfectly to act as a basis for Integer Linear Programming (ILP). Within the ILP-based
approach, the linear inequalities are used as a basic body of constraints. However, the
constraints only cover means to accept or reject potential places. Therefore the con-
straint body needs to be enriched with some objective function defined over the decision
variables, which together define an ILP formulation. A multitude of possible objective
functions exist, all yielding potentially different results, e.g. maximizing versus mini-
mizing the number of arcs used by a place.

When solving an ILP, we typically end up with one optimal solution, given the ob-
jective. Therefore, the ILP-based process discovery algorithm as presented in [4] solves
multiple slightly extended versions of the basic formulation in order to find specific
places. The most useful approach is the usage of causal relations between activities ex-
hibited within the event log. Given some algorithm that is able to learn causal relations
within an event log, the ILP-based process discovery algorithm will add constraints
for each causal relation and solve the corresponding extended ILPs. Each solution to a
solved ILP represents a place and is added to the resulting Petri net.

The implementation related to the formulation as presented in [4], i.e. the ILP-
Miner3 [11] ProM plug-in, uses one specific implementation to generate causal relations
given an event log. The implementation related to the work presented in this paper, i.e.
the HybridILPMiner4 ProM plug-in, enables the user to specify what algorithm should

3https://svn.win.tue.nl/repos/prom/Packages/ILPMiner/Trunk/
4https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/

Trunk/

https://svn.win.tue.nl/repos/prom/Packages/ILPMiner/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Trunk/
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be used to calculate a set of causal relations. The algorithms, in turn, are implemented
in the CausalActivityMatrixMiner5 ProM plug-in. For the purpose this paper we have
used the “mini” causal activity algorithm with auto-adjust to find causalities.

The causal relation based approach limits the number of places added to the result-
ing Petri net, i.e. it is bound by the number of causal relations exhibited in the event log.
As a consequence the models found by the algorithm are less over-fitting the event log
and are likely to be less precise when compared to traditional language-based region
theory approaches. In fact, using different causal relations might yield different results
on the same event log. As we have seen however, the technique is still extremely prone
to the presence of exceptional behavior.

4 Integrated ILP Filtering

In order to check whether a place may be added to the resulting Petri net, we encode
the prefix-closure of the event log as a set of linear inequalities. Reconsider event
log L = [〈a, b, c, d, e, g〉10, 〈a, c, b, d, e, g〉10, 〈a, b, c, d, e, f, e, g〉10, 〈a, c, b, d, e, f, e,
g〉10]. L’s prefix closure is the set of sequences L s.t. each sequence in L is either a
prefix of a trace in L or a prefix of a sequence in L, i.e. L = {ε, 〈a〉, 〈a, b〉, 〈a, c〉, 〈a, b,
c〉, 〈a, c, b〉, ..., 〈a, b, c, d, e, f, e, g〉, 〈a, c, b, d, e, f, e, g〉}. As the linear inequalities do
not take trace-frequencies into account we are, w.r.t. construction of constraints, not in-
terested in the frequencies of the sequences in L. In the remainder of this paper, let A
denote to the set of event-classes present in L, i.e. A = {a, b, c, d, e, f, g}.

To encode the prefix-closure we use three basic decision variables that allow us to
express a place in the resulting Petri net. Variable m ∈ {0, 1} denotes the presence of
a token, variable ~x ∈ {0, 1}|A| (an A-sized vector) denotes incoming arcs and variable
~y ∈ {0, 1}|A| denotes outgoing arcs. Thus as an example, for p1 in Figure 3 we have
m = 1 and ~y(a) = 1 (all other variables are zero, i.e. ~x(a) = ~x(b) = ... = ~y(g) = 0)
whereas for p5 we have ~x(c) = 1 and ~y(d) = 1.

We encode L as a minimal sequence of token production and consumption steps,
using the aforementioned variables and the (flower) Petri net depicted in Figure 4 (note
that for place p in Figure 4 we have: m = ~x(a) = ... = ~y(g) = 1). For example, to let
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Fig. 4: Place p showing flower behavior, used to encode L.

5https://svn.win.tue.nl/repos/prom/Packages/
CausalActivityMatrixMiner/Trunk/

https://svn.win.tue.nl/repos/prom/Packages/CausalActivityMatrixMiner/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/CausalActivityMatrixMiner/Trunk/


8

Table 1: Basic constraints c1, c2, ..., c11 of the ILP-based process discovery algorithm
based on example event log L.

m ~x(a) ~x(b) ~x(c) ~x(d) ~x(e) ~x(f) ~x(g) ~y(a) ~y(b) ~y(c) ~y(d) ~y(e) ~y(f) ~y(g)

c1 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 ≥ 0 〈a〉
c2 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 ≥ 0 〈a, b〉
c3 1 1 0 0 0 0 0 0 −1 0 −1 0 0 0 0 ≥ 0 〈a, c〉
c4 1 1 1 0 0 0 0 0 −1 −1 −1 0 0 0 0 ≥ 0 〈a, b, c〉
c5 1 1 0 1 0 0 0 0 −1 −1 −1 0 0 0 0 ≥ 0 〈a, c, b〉
c6 1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 ≥ 0 〈a, b, c, d〉, 〈a, c, b, d〉
c7 1 1 1 1 1 0 0 0 −1 −1 −1 −1 −1 0 0 ≥ 0 〈a, b, c, d, e〉, 〈a, c, b, d, e〉
c8 1 1 1 1 1 1 0 0 −1 −1 −1 −1 −1 −1 0 ≥ 0 〈a, b, c, d, e, f〉, 〈a, c, b, d, e, f〉
c9 1 1 1 1 1 1 0 0 −1 −1 −1 −1 −1 0 −1 ≥ 0 〈a, b, c, d, e, g〉, 〈a, c, b, d, e, g〉
c10 1 1 1 1 1 1 1 0 −1 −1 −1 −1 −2 −1 0 ≥ 0 〈a, b, c, d, e, f, e〉, 〈a, c, b, d, e, f, e〉
c11 1 1 1 1 1 2 1 0 −1 −1 −1 −1 −2 −1 −1 ≥ 0 〈a, b, c, d, e, f, e, g〉, 〈a, c, b, d, e, f, e, g〉

the Petri net in Figure 4 reproduce the empty sequence ε, no transition needs to be fired
and hence no variable is needed. For sequence 〈a〉, a token (represented by decision
variable m) is needed which is consequently consumed by transition a (represented by
decision variable ~y(a)). Thus, sequence 〈a〉 maps to the linear combination m − ~y(a).
For 〈a, b〉, after a token is consumed by transition a, the token needs to explicitly be
produced by transition a (represented by ~x(a)) in order for transition b to be able to
consume it again (represented by ~y(b)), leading to m− ~y(a) + ~x(a)− ~y(b). Repeating
this rationale for each sequence present in L yields the constraint body as depicted in
Table 1.

Each linear inequality has a right hand side greater or equal to zero, specifying the
requirement that the sequence should be reproducible by the place we would like to add.
Again consider place p5 of the Petri net shown in Figure 3 for which we have ~x(c) = 1
and ~y(d) = 1. Note that for each inequality presented in Table 1, ~x(c) + ~y(d) ≥ 0 and
thus we may accept p5. Some of the sequences in L map to the same linear inequality,
i.e. constraints c6, c7, ..., c11 in Table 1 all have two corresponding sequences inL. Thus,
the linear inequalities abstract from the notion of order within the sequence, except for
the last activity, i.e. constraints c2 and c3 differ only based on the last activity in the
sequence.

The addition of trace 〈a, b, d, e, f, e, g〉 to L, resulting in L′ leads to the fact that
place p5 in Figure 3 is no longer accepted as a place. Due to the presence of 〈a, b,
d, e, f, e, g〉 in L′ all its prefixes are present in L′. To encode L we extend the set of
linear inequalities as depicted in Table 1 with the new inequalities corresponding to
the prefixes of 〈a, b, d, e, f, e, g〉 as depicted in Table 2. Note that 〈a〉 and 〈a, b〉 are
already part of L and therefore do not generate new inequalities. Also note that for each
inequality in Table 2 place p5 evaluates to −1, i.e. place p5 is encoded as ~x(c) + ~y(d)
and as we can see in Table 2 ~x(c) + ~y(d) = −1 for constraints c12, c13, ..., c16. Thus
place p5 does not adhere to the newly added inequalities.

It is possible to require each place to be empty after trace completion [4, Sec-
tion 4.5.2]. Enforcing emptiness after trace completion guarantees that the empty-marking
is a reachable final marking of the Petri net constructed. We enforce emptiness after
trace completion by specifying for each trace in L (L′ respectively) that the corre-
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Table 2: Constraints c12, c13,..., c16 based on the prefixes of 〈a, b, d, e, f, e, g〉 which
together with the constraints depicted in Table 1 form the constraint body for L′.

m ~x(a) ~x(b) ~x(c) ~x(d) ~x(e) ~x(f) ~x(g) ~y(a) ~y(b) ~y(c) ~y(d) ~y(e) ~y(f) ~y(g)

c12 1 1 1 0 0 0 0 0 −1 −1 0 −1 0 0 0 ≥ 0 〈a, b, d〉
c13 1 1 1 0 1 0 0 0 −1 −1 0 −1 −1 0 0 ≥ 0 〈a, b, d, e〉
c14 1 1 1 0 1 1 0 0 −1 −1 0 −1 −1 −1 0 ≥ 0 〈a, b, d, e, f〉
c15 1 1 1 0 1 1 1 0 −1 −1 0 −1 −2 −1 0 ≥ 0 〈a, b, d, e, f, e〉
c16 1 1 1 0 1 2 1 0 −1 −1 0 −1 −2 −1 −1 ≥ 0 〈a, b, d, e, f, e, g〉

sponding linear inequality should equal 0. For event log L this would lead to adding the
following constraints to the ILP’s constraint body:

m ~x(a) ~x(b) ~x(c) ~x(d) ~x(e) ~x(f) ~x(g) ~y(a) ~y(b) ~y(c) ~y(d) ~y(e) ~y(f) ~y(g)

1 1 1 1 1 1 0 1 −1 −1 −1 −1 −1 0 −1 = 0 〈a, b, c, d, e, g〉, 〈a, c, b, d, e, g〉
1 1 1 1 1 2 1 1 −1 −1 −1 −1 −2 −1 −1 = 0 〈a, b, c, d, e, f, e, g〉, 〈a, c, b, d, e, f, e, g〉

Constraints c12, c13, ..., c16 depicted in Table 2 lead to rejection of place p5. Thus
in order to make place p5 an acceptable solution we need means to filter out those
constraints. We present two techniques, slack variable filtering and sequence encoding
filtering. Slack variable filtering introduces a new set of variables that allow the ILP
solver to ignore some constraints within the constraint body. Sequence encoding filter-
ing leaves out constraints that refer to low-frequent exceptional behavior before actually
solving the ILP problems.

4.1 Slack Variable Filtering

The main rationale of slack variable6 filtering is to overcome the influence of excep-
tional behavior by adding the ability to ignore unwanted constraints. This is achieved
by adding a slack variable for each constraint that is based on a sequence in L′. Each
slack variable is allowed to either have value 0 or value 1. If a slack variable is assigned
a value 1, the constraint corresponding to the slack variable is ignored. To prevent the
ILP from using every slack variable and effectively ignore all constraints, an additional
constraint is added specifying an upper-bound w.r.t. the total number of slack variables
the ILP is allowed to assigned a value of 1. The threshold value that specifies how many
slack variables are allowed to use is a parameter of the approach.

In our example based on L′ the basic set of linear inequalities is the set c1, c2, ...,
c16 depicted in Tables 1 and 2. Hence in slack variable based filtering we add 16 new
variables s1, s2, ..., s16 ∈ {0, 1}, where s1 corresponds to c1, s2 corresponds to c2, ...
and s16 corresponds to c16. In order to make p5 an acceptable solution again constraints
c12, c13, ..., c16 should be ignored, i.e. s12, s13, ..., s16 should be set to 1. Thus a suitable
upper-bound for the number of slack variables that we accept to use in this case is five.

6Note that the term slack variable within this context refers to the slack introduced within
the ILP w.r.t. filtering. In terms of terminology the term slack-variable therefore differs from the
notion of conventional slack variables within the field of optimization.
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Table 3: Core constraint body of the slack variable filtering ILP-based process discovery
formulation applied on the running example.

m ~x(a) ~x(b) ~x(c) ~x(d) ~y(a) ~y(b) ~y(c) ~y(d) s11 s12 s13 s14 s15 s16
c11 1 0 0 0 0 −1 0 0 0 N11

0 0 0 0 0 ≥ 0 〈a〉
c12 1 1 0 0 0 −1 −1 0 0 0 N12 0 0 0 0 ≥ 0 〈a, b〉
c13 1 1 0 0 0 −1 0 −1 0 0 0 N14

0 0 0 ≥ 0 〈a, c〉
c14 1 1 1 0 0 −1 −1 0 −1 0 0 0 N14

0 0 ≥ 0 〈a, b, d〉
c15 1 1 0 1 0 −1 0 −1 −1 0 0 0 0 N15 0 ≥ 0 〈a, c, d〉
c16 1 1 1 0 0 −1 −1 −1 0 0 0 0 0 0 N16 ≥ 0 〈a, b, c〉
c17 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ≤ ts × |{c1, c2, ..., c6}|

As an example constraint body based on slack variable filtering, using L1 = [〈a,
b, d〉, 〈a, c, d〉, 〈a, b, c〉] as a basis7, consider Table 3. It comprises of a diagonal matrix
ranging over the slack variables s11 , s12 , ...,s16 . It is important that the coefficients of
the diagonal matrix, i.e.,N11 ,N12 , ...,N16 , have a sufficiently large value assigned such
that the corresponding constraint is actually ignored. The additional constraint c17 en-
forces some upper-bound to be respected w.r.t. the total number of ignored constraints.
The slack variable threshold ts specifies what portion of the slack variables may be
used. In the example if 1

6 ≤ ts <
1
3 is used, one constraint may be dropped out of the

constraint body.
To add constraints for emptiness after completion, it is important that we enforce a

coupling to constraints representing prefixes. We should use a negative counter weight
for every prefix and change the r.h.s. of the equations from equal to zero to less than or
equal to zero. For example, adding emptiness after completion to the example based on
L1 yields the three additional constraints:

m ~x(a) ~x(b) ~x(c) ~x(d) ~y(a) ~y(b) ~y(c) ~y(d) s11 s12 s13 s14 s15 s16
c18 1 1 1 0 1 −1 −1 0 −1 −N11 −N12 0 −N14 0 0 ≤ 0 〈a, b, d〉
c19 1 1 0 1 1 −1 0 −1 −1 −N11

0 −N13
0 −N15

0 ≤ 0 〈a, c, d〉
c110 1 1 1 1 0 −1 −1 −1 0 −N11

−N12
0 0 0 −N16

≤ 0 〈a, b, c〉

In the previous example case and in the case of event log L′ we are able to explicitly
indicate an upper-bound for the number of slack variables to be used and we know what
slack variables to use in order to get the result we are looking for. In practice this is not
the case as the question remains what slack variables the ILP-solver will set to 1. As is,
the solver can ignore constraints at random when solving a slack variable filtering-based
ILP. The solver can however be steered to ignore certain constraints by manipulation of
the ILP’s objective function. The exact values for the object function’s coefficients of
the slack variables is therefore a second parameter of the approach. The effect of these
coefficients is inseparable from the original objective function used as it influences a
potential place’s objective value.

Although slack variable filtering is a usable technique from a theoretical perspec-
tive, it has some downsides from a practical perspective. Even if we use a suitable
ILP-objective function that steers the filtering to some extent, in general the ILP-solver

7The use of L1 is mainly motivated by space constraints, i.e. the constraint body tends to be
large on larger examples.
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is still free in choosing what slack variables to use. In practice, when applying discov-
ery using causal relations, the actual slack variables used may differ per place found.
Hence, some places will be based on a different body of linear inequalities than others.
Secondly, estimating a suitable objective function is a cumbersome task as it is partly
coupled to the original objective function used. Thirdly, the computation time needed to
solve an ILP is theoretically exponential in the number of variables used. Adding slack
variables based on the encoding of L quickly generates ILP’s with a very large amount
of additional variables (worst case: |L| variables) and thus an infeasible computation
time. During experimentation the slack variable filtering technique already resulted in
infeasible computation time on a log only consisting of 12 event classes and a total of
1000 traces (± 4 hours to solve all ILPs constructed). Thus, from a practical perspective
the technique is of little use and, hence, we look for alternative filtering approaches.

4.2 Sequence Encoding Filtering

In sequence encoding filtering, like in slack variable filtering, we try to filter by ignor-
ing constraints. Filtering within this technique is based on the encoded representation of
sequences in L, i.e. the linear inequalities. The fundamental difference w.r.t. slack vari-
able filtering is the fact that in sequence encoding filtering we leave the constraints out
of the constraint body. Additionally the filtering is executed one time and hence every
ILP that is eventually solved uses the same set of linear constraints within its constraint
body.

Let us reconsider L′ = [〈a, b, c, d, e, g〉10, 〈a, c, b, d, e, g〉10, 〈a, b, c, d, e, f, e, g〉10,
〈a, c, b, d, e, f, e, g〉10, 〈a, b, d, e, f, e, g〉] and correspondingly the multi-set representa-
tion of it’s prefix-closure i.e. L′ = [ε41, 〈a〉41, 〈a, b〉21, 〈a, c〉20, 〈a, b, c〉20, 〈a, c, b〉20〈a,
b, d〉, ..., 〈a, b, c, d, e, f, e, g〉10, 〈a, c, b, d, e, f, e, g〉10, 〈a, b, d, e, f, e, g〉]. The core of se-
quence encoding filtering is a directed acyclic graph where each linear inequality based
on a sequence in L′ acts as a vertex. An example of such graph, based on L′ and L′ is
depicted in Figure 5.

The empty sequence ε always acts as a root vertex. A vertex representing some
linear inequality ci has outgoing arcs to those vertices that represent a linear inequality
of which the sequence corresponding to ci could act as a prefix. The arcs are labeled

ε c1

c2

c3

c12

c4

c5

c13

c6

c14 c15 c16

c7

c8

c9

c10 c11

41
21

20

1
20

20

1 1 1 1

20

20
40

20

20

20 20

Fig. 5: Sequence encoding filtering graph based on example log L′ and L′, where each
ci ∈ {c1, c2, ..., c16} corresponds to the linear inequalities presented in Tables 1 and 2.
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using actual sequence frequencies present in the multi-set abstraction of the prefix-
closure of the log. In the example depicted in Figure 5, ε is always followed by c1,
i.e. 〈a〉 is the only 1-sized sequence in L. c1 has two connected vertices, being c2,
representing 〈a, b〉 and c3 representing 〈a, c〉. The cardinality of 〈a, b〉 is 21 in L′ and
hence the arc from c1 to c2 has value 21.

After constructing the filtering graph, we traverse the graph in a breadth first man-
ner and cut off branches that represent exceptional behavior. We start at its root and
assess what outgoing arcs from the root have a too low arc weight given some decision
function. Once we have decided what outgoing arcs should remain we traverse each of
these arcs. From the end-point of such arc, i.e. a vertex representing a constraint, we
again evaluate all the outgoing arcs (if any). Only those constraints that correspond to a
vertex in the filtered sequence encoding graph will be added to the ILP constraint body.
The decision function that helps us in deciding whether we cut off a certain branch in
the graph is a parameter of the approach.

For the implementation of the algorithm in the process mining framework ProM we
have adopted the following approach. For each vertex that is the end-point of an edge
that we keep we always include the outgoing edge with the maximum edge label value.
Additionally we include all other edges e that have a lower (or equal) value than (to)
the maximum value, as long as the difference of e’s value w.r.t. the maximum is within
some bounded range. The bounded range is typically some fraction of the maximum,
this fraction is deemed the cut-off coefficient cc.

As an example we apply this technique on the graph depicted in Figure 5 with
cc = 1

10 of which the result is depicted in Figure 6. The root has one arc and thus we
keep this arc. Traversing the arc leads us to vertex c1 which has two outgoing arcs. The
outgoing arc from c1 with the maximum label is the arc to c2 and is labeled 21. This arc
will be kept in the graph. The bounded range for any other arc starting from vertex c1 is
now computed by multiplying the cut-off coefficient with the maximum value for this
node, i.e. the bounded range is 1

10 ×21 = 2.1. Any edge going out of c1 that has a value
greater than or equal to 21 − 2.1 = 18.9 is kept in the graph. In this case the arc from
c1 to c3 will also remain as it has a value of 20, which is greater than 18.9. In vertex c2
we identify that we keep the edge to c4, which has the maximum label. We only keep

ε c1

c2

c3

c12

c4

c5

c13

c6

c14 c15 c16

c7

c8

c9

c10 c11

41

21

20

20

20

20

20

40

20

20

20 20

1

1 1 1 1

Fig. 6: Sequence encoding filtering graph based on example log L′ and L′, where each
ci ∈ {c1, c2, ..., c16} corresponds to the constraints presented in Tables 1 and 2. Filter-
ing affected the branch starting at c2 and ending in c16.
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outgoing arcs from c2 with a label value greater than or equal to 20 − 1
10 × 20 = 18.

As a result we will drop the edge to c12 as it only has a label value of 1. For node
c3 we identify only one arc leading to c5 which we decide to keep. The next vertices
to consider for evaluation are c4 and c5. Note that c12 will never be evaluated and as
a consequence neither will c13, c14, c15 and c16. Using the aforementioned approach,
only constraints c1, c2, ..., c11 remain part of the graph. Therefore the constraint body
as depicted in Table 1 will be the result of applying sequence encoding filtering on L′.
As a consequence, place p5 in Figure 3 becomes a feasible place again.

The result of applying sequence encoding filtering on the event log used for discov-
ery of the models depicted in Figure 2, using the aforementioned cut-off strategy with a
cc value of 3

4 is depicted in Figure 7. The Petri net depicted in Figure 7 shows that using
sequence encoding filtering only those linear inequalitys remain in the constraint body
that are related to frequent behavior whereas a great part of the exceptional behavior is
successfully filtered-out.

5 Evaluation

Both filters have been implemented in the HybridILPMiner8 package within the ProM
framework (http://www.promtools.org). Using the implementation we have
validated the sequence encoding filter approach against the conventional ILP-based pro-
cess discovery algorithm. We evaluated model quality in terms of fitness and precision
as well as the efficiency of applying sequence encoding filtering.

All experiments have been conducted using a Dell Latitude E55400, Intel(R) Core
(TM) i7-4600U CPU @ 2.10 Ghz – 2.70 Ghz (x-64), 8.00 GB RAM laptop. As indicated
in Section 4.1, from a practical perspective the slack variable filtering technique is of lit-
tle use and is therefore left out of empirical evaluation. All data artifacts resulting from

Fig. 7: Process discovery result of the sequence encoding filtering ILP-based algorithm,
with cc = 7

10 , using an event log that contains a minor fraction of exceptional behavior.
8https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/

Tags/2015_bpm_ilp_filtering_version-0.2.1/

http://www.promtools.org
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/2015_bpm_ilp_filtering_version-0.2.1/
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/2015_bpm_ilp_filtering_version-0.2.1/
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the experiments described in the upcoming sections are available at https://svn.
win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/results/
results_0.2.1.tar.gz.

5.1 Model Quality

The event logs used in the empirical evaluation of model quality are artificially gener-
ated event logs and originate from a study related to the impact of exceptional behavior
to rule-based approaches in process discovery [12]. The event logs contain different
percentage levels of exceptional behavior and are based on three ground truth event
logs without exceptional behavior. These ground truth event logs are entitled a12f0n00,
a22f0n00 and a32f0n00. The two digits behind the a character indicate the number of
event classes present within the event log, i.e. event log a12f0n00 contains 12 different
event classes. For each log a total of four new logs is generated, differing in the num-
ber of traces that have been manipulated. The percentages used for trace manipulation
are 5%, 10%, 20% and 50%. The manipulation percentage is incorporated in the last
two digits of the event log’s name, i.e. the 5% manipulation version of the a22f0n00
event log is called a22f0n059. Exceptional behavior within the event logs is generated
by either tail/head of sequence removal, random part of sequence body removal or in-
terchange of two randomly chosen events [12].

From an evaluation point of view, the existence of ground truth event logs which
do not contain exceptional behavior is of utmost importance. Within evaluation, these
event logs combined with the quality dimension precision allow us to judge how well a
technique is able to filter out exceptional behavior. Precision is defined as the amount of
behavior allowed by the model that is also present in the event log. Thus if all behavior
allowed by the model is present in the event log, precision is maximal, i.e. the precision
value is 1. If the model allows for behavior that is not present in the event log, precision
will be lower than 1. The more behavior is allowed by the model that is not present in the
event log, the lower the precision value will be. If exceptional behavior is present in an
event log, the conventional ILP-based process discovery algorithm is unable to find any
meaningful patterns within the event log. The derived model will, by definition, allow
for all exceptional behavior present in the event log. Hence, we expect such models
to have low precision when using the ground truth event log as a basis for precision
computation. On the other hand, if we discover models using an algorithm that is more
able to handle the presence of exceptional behavior, we expect the precision of the
discovered models to be higher.

To evaluate the sequence encoding filtering approach we have applied the conven-
tional ILP-based process discovery algorithm and three different sequence encoding
filtering instantiations for each event log. We used the branch cut-off technique as de-
scribed in Section 4.2 with cut-off coefficients 1

4 , 1
2 , 3

4 . For each event log we both
learned models with and without adoption of emptiness after case completion con-
straints [4, Section 4.5.2]. We measured the replay-fitness and precision based on the

9For discovery of the Petri net in Figure 2a we used a32f0n00 as an input whereas for the
Petri nets in Figures 2b and 7 we used a32f0n05.

https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/results/results_0.2.1.tar.gz
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/results/results_0.2.1.tar.gz
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/results/results_0.2.1.tar.gz
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ground truth event logs. The results of the experiments are presented in Figure 11 on
Page 19..

Replay-fitness of the discovered models w.r.t. the ground truth event logs using all
four approaches remains 1 in all cases10. Due to the incapability of handling excep-
tional behavior of the conventional algorithm, as expected, precision drops rapidly. For
the sequence encoding filtering we identify the 1

4 variant to outperform the other two.
This is explained by the fact that the cc = 1

4 variant is the most rigorous filter and hence
removes the most constraints. It is clear that the decrease of precision for the sequence
encoding based approaches is less severe compared to the conventional approach. This
is in line with the rationale as presented before as we expect the filtering based ap-
proaches to be more able in handling exceptional behavior. Therefore, we conclude that
the filtering based models discover Petri net patterns that more accurately represent the
dominant behavior in the input event log. Thus, the newly presented techniques allow
us to successfully apply filtering whilst using ILP-based process discovery as a basis.

5.2 Computation time

The core of sequence encoding filtering is leaving out constraints that are likely to
refer to exceptional behavior. Thus we reduce the size of the core ILP constraint body.
Apart from the results w.r.t. replay-fitness and precision, the sequence encoding filtering
approach also allows us to discover process models faster. In Figure 8 we have depicted
the average ILP solve time per event log used in the model quality analysis. For each
event log a set of causal relations was calculated each generating an ILP. We measured
the solve time of each generated ILP in both the non-filtered and the filtered cases.
Solving each ILP, for each filter level and the non-filtered version, was performed 50
times.

The results in Figure 8 show that cutting out some of the constraints related to ex-
ceptional behavior often leads to remarkably faster solve times. The results also show
that in most cases cutting away more branches, i.e. using a lower cut-off coefficient,
leads to lower computation times. However, when the amount of exceptional behavior
increases, the average solve times of the filter based instantiations can exceed the aver-
age solve time of the conventional approach, i.e., a22f0nXX with 50% and af32f0nXX
with 20% and 50%. Manual inspection of the models associated with the results showed
that the filtered instantiations yielded models comprising of much more Petri net places
than the models returned by the conventional algorithm. Thus, the filtered instances
lead to more feasible ILP solutions. To quantify this relationship we have depicted the
number of places found per event log in Figure 9.

For the 0% logs, all versions find the same number of places. For the other levels of
exceptional behavior, surprisingly, all filter approaches find the exact same number of
places whereas the conventional approach finds less. Thus, the 3

4 variant already seems
to filter out all constraints that cause the conventional approach to be unable to find
places. Figure 10 depicts the solve times relative to the number of places found.

The results show that the sequence encoding filtering instantiations have lower solve
times relative to the number of places found. In case of a12f0nXX with noise level 50%

10One exception for SEF with cc = 1
2

, where replay fitness equals 0.99515.
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Fig. 8: Average solve time (ns.) (avg. of 50 runs) for solving an ILP based on the con-
ventional ILP-based process discovery algorithm and the sequence encoding filtering
approach with cc = 1

4 , cc = 1
2 and cc = 3

4 .

the conventional algorithm did not find any place and hence the data point is left out
of the chart. In general it seems that due to the high level of exceptional behavior, the
conventional algorithm ends up trying to solve a large number of ILPs that do not have
any feasible solution. The filtered variants seem to actually do find solutions for the
corresponding filtered ILPs. In some of these cases, the underlying solver seems faster
in deciding that there is no feasible solution compared to actually finding a feasible
solution given a slightly smaller constraint body, i.e. using a filtered constraint body.
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6 Conclusion

The work presented in this paper is motivated by the observation that all existing region-
based techniques are unable to cope with exceptional low-frequent behavior in event
logs. ILP based process discovery has several advantages, but the inability to abstract
from infrequent exceptional behavior makes it unusable in real-life settings. We pre-
sented two techniques that enable us to apply filtering exceptional behavior within the
ILP-based process discovery algorithm. Both techniques allow us to find models with
acceptable trade-offs w.r.t. replay fitness and precision. However, only sequence encod-
ing filtering is feasible for larger event logs. We showed that sequence encoding filtering
enables us to find Petri net structures in data consisting of exceptional behavior, using
ILP-based process discovery as an underlying technique. An additional benefit of the
approach is that it often decreases the average time needed to solve the corresponding
ILP problems. However, in some cases the technique might lead the underlying solver
to find more feasible ILP solutions w.r.t. the conventional approach, which might lead to
higher solve times. This only seems the case if the cut-off coefficient chosen is relatively
high, i.e. closer to 1.

The other technique presented, being slack-variable based filtering, is theoretically
able to handle event logs consisting of exceptional behavior. From a practical perspec-
tive the techniques is not feasible as it generates ILP problems with too high computa-
tion times.

An interesting direction for future research is assessing the combination of ILP-
based filtering techniques and event log decomposition [13, 14]. Specifically slack-
variable based filtering might benefit from integration with decomposition as the ILP
problems constructed in a decomposed setting are typically smaller than the ILP prob-
lems constructed in a traditional event log based setting.
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