
A Structural Model Comparison for finding the Best
Performing Models in a Collection

D.M.M. Schunselaar1?, H.M.W. Verbeek1?, H.A. Reijers2,1?, and W.M.P. van der
Aalst1?

1 Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, h.a.reijers,
w.m.p.v.d.aalst}@tue.nl

2 VU University Amsterdam,
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

h.a.reijers@vu.nl

Abstract. An improvement or redesign of a process often starts by modifying
the model supporting the process. Analysis techniques, like simulation, can be
used to evaluate alternatives. However, even a small number of design choices
may lead to an explosion of models that need to be explored to find the opti-
mal models for said process. If the exploration depends on simulation, it often
becomes infeasible to simulate every model. Therefore, we define a notion of
monotonicity to reduce the number of models required to be simulated whilst
guaranteeing that the optimal models are found. We define and prove our mono-
tonicity for throughput time. Furthermore, within our experimental evaluation we
obtain very promising results in terms of running time because fewer models need
to be simulated.

1 Introduction

While improving or redesigning a business process, one can model each part of the
process in various ways. Even if each part has a limited number of variants, the com-
bination of options may cause an explosion of possible models. This set of possible
models, we call a model collection. As a redesigner is often not interested in just any
model, she would like to have qualitative and quantitative information on the models in
the model collection such that she can select the most suitable models, assuming one
or more relevant performance criteria. In this paper, we are particulary interested in the
throughput time (sometimes called flow time, sojourn time, or lead time) of a model
and the best models are those models having a significant lower throughput time than
the other models. Unfortunately, brute-force approaches require the simulation of each

? This research has been carried out as part of the Configurable Services for Local Governments
(CoSeLoG) project (http://www.win.tue.nl/coselog/).



Fig. 1: Using monotonicity, we can transform the model collection on the left to the
partially ordered model collection on the right. As a result, fewer alternatives need to
be explored.

model, which is a time-consuming endeavour. Therefore, we present a technique to re-
duce the amount of models needed to be simulated, whilst guaranteeing that the best
models are still found. We have chosen throughput time as this is a well-understood and
often studied Key Performance Indicator (KPI) which can only be deduced from the dy-
namic behaviour of a model contrary to some other KPIs, e.g., number of control-tasks,
which can be deduced from the structure of the model.

The aforementioned reduction is achieved by defining a monotonicity notion, which
provides a partial order over the models. If we take the model collection on the left-
hand side of Fig. 1, where each dot corresponds to a model, our particular monotonicity
notion may allow for the partial order on the right-hand side of the same figure. Our
monotonicity notion is based on the structure of the process models and gives a so-
called at-least-as-good relation. If we can deduce monotonicity between a model M
and a model M ′, then we know that the throughput time of M is at-least-as-good as
the throughput time of M ′. By having such a partial order, we can limit our search for
the optimal models, i.e., to the models A and B in Fig. 1. We know that models not
considered have poorer throughput performance. In Fig. 1, if we have simulated A and
B and A is better than B, then we know that all models connected to B via the partial
order do not need to be simulated as A is at-least-as-good as all of them.

In this paper, the structural comparison between two models is done using a divide-
and-conquer approach. In this approach, each model is seen as a collection of weighted
runs (runs are sometimes called process nets [1], or partial orders). Based on the struc-
tures of two runs, we can decide whether one run is at-least-as-good as the other
run. Then, using the run weights, representing the execution likelihood, we can decide
whether one model is at-least-as-good as another model.

We formally prove the correctness of our approach. Additionally, we have also im-
plemented it to demonstrate that we indeed obtain the desired reduction in to-be simu-
lated models and in overall analysis time. We have applied our approach on randomly
generated model collections. For each of these collections, we compare the naive ap-
proach (simulate all) with the approach presented here for various sizes of subsets from
the collections. On these random samples, we gain on average a reduction of 40% in
the amount of models to be analysed and also a reduction of 40% in analysis time.

This paper is organised as follows: In Sect. 2, we present our definitions for runs,
models, and model collections. Our monotonicity notion and proofs are presented in

2



a b c

d
r1

r3

Run P1

Run P2

Model M

w(P1) = 0.5

d

Run P ′
1

Model M ′

e

Model Collection MC

w(P2) = 0.5

w′(P ′
1) = 1

A = {a, b, c, d, e}
R = {r1, r2, r3, r4, r5, r6}

Ka =

KPT (a) =

KPT (b) =

KPT (c) =

KPT (d) =

KPT (e) =

v1 v2 v3

v4

a b c
r6

v1 v2 v3

e

r5

v4

a b c

v1 v2 v3

v4 v5 v6
r2

ar
a
b
c

e
a

r1

r3
r4

r2

ar′

a
b
c
d

r5 e
r4 d

Fig. 2: An example model collection.

Sect. 3. Section 4, discusses experimental results. Finally, we conclude our paper with
related work (Sect. 5) and the conclusions (Sect. 6).

2 Model Collection

In this paper, a model collection consists of models, while a model itself consists of
weighted runs [1] (see Fig. 2). A run specifies the partial order of activities needed to
be executed for a particular case and does not contain any choices. A run consists of
vertices which are labelled with activities. In Fig. 2, we have a run P1 with a vertex
v1 labelled with activity a. Next to this, a run specifies the causal relationship between
the vertices by means of edges. The edge between the vertices v4 and v5 in run P ′

1

means that e can only start once vertex v4 executing d has been completed. Prior to
formally defining the runs, we introduce the set of activities, denoted by A, and the set
of resources, denoted by R, which are assumed to be constant for the model collection
(although it is not necessary that every activity or resource is present in each model/run).
We have chosen this representation for our models as this fits better with our divide-
and-conquer technique. In [1], an algorithm is presented to transform a Petri net into a
collection of runs. By limiting the number of times an iteration is executed, it is possible
to obtain a finite set of runs.

Definition 1 (Run). Let A be a set of activities, then a run P over A is a 3-tuple (V,
E, `) where:

– V is a set of vertices;
– E ⊆ V × V is a set of directed edges;

3



– ` ∈ V → A is a labelling function labelling vertices with activities;
– the graph G = (V,E) is a Directed Acyclic Graph (DAG).

The edges in a run indicate direct succession of vertices; E+ is the partial order of
the vertices.

A model consists of runs and these runs combined define the behaviour of a model.
As not every run must be equally probable, we define a weight function within the
model. Furthermore, a model specifies which resources can execute which activity, e.g.,
in model M in Fig. 2, activity a can be executed by resources r1 and r6. In the definition
of a model, we use PA as the universe of runs over A.

Definition 2 (Model). Let A be a set of activities, let R be a set of resources, let PA

be the universe of runs over A, then a model M over A and R is a 3-tuple (PP , w, ar)
where:

– PP ⊆ PA is the set of runs over A;
– w ∈ PP → (0, 1] is a weight function indicating the probability of each run such

that
(∑

P∈PP w(P )
)
= 1. Note that runs with weight 0 are not allowed;

– ar ∈ R→ A indicates per resource which activity it can execute.

Note that a resource can execute only one activity, but multiple resources can ex-
ecute the same activity. We require that a resource can only perform a single activity
to guarantee that we can compare the resource utilisation of both models and thus the
queue time per activity based on the structure. This is due to the fact that even a small
increase in the resource utilisation can have a significant effect on the throughput time.
We acknowledge that this is a strong assumption, but it is purely for an end to end ap-
proach, i.e., if there is information that the queue times in one model are at-most that
of the other model, then we can lift this assumption and our proofs on run and model
level still hold. For our definition of our model collection, we use the universe of ran-
dom variables (K) to annotate activities with stochastic information and to be able to
explicitly define the inter-arrival time of new cases. A random variable can be seen as a
function giving probabilities to possible outcomes, e.g., the probability that a coin will
give heads. Both the stochastic information of activities and the inter-arrival time of new
cases are on the collection level and thus are the same for all models in the collection.
Next to this, we useMA,R as the universe of models over A and R.

Definition 3 (Model Collection). Let K be the universe of random variables, then a
model collection MC is a 5-tuple (A,R,MM ,Ka,KPT ) where:

– A is the set of activities;
– R is the set of resources;
– MM ⊆MA,R is the collection of models over A and R;
– Ka ∈ K is the random variable describing the inter-arrival time of new cases;
– KPT ∈ A → K maps every activity onto the random variable describing the

duration of that activity.

Note that our model collection is less general than most other model collections as
our model collection is a body of scenarios for executing the same process.

4



3 Throughput Time

As mentioned before, we focus on the throughput time. The throughput time of a single
case is the time between arrival of this case and the moment the case is finished. The
throughput time of a run P in a model M in a model collection MC for an arbitrary case
is described by the random variable KTT (MC,M,P ) ∈ K. We consider the situation
where the model and runs are in steady state. This will be achieved if the utilisation of
the resources is below 1.0 because Ka is independent.

Definition 4 (Throughput time of a run). Let MC = (A,R,MM ,Ka,KPT ) be a
model collection, let M = (PP , w, ar) be a model in MM , let P = (V,E, `) be
a run in PP , then the throughput time of P in steady state is the random variable
KTT (MC,M,P ) ∈ K.

We are interested in the model with the lowest throughput time which requires the
comparison of two random variables. For this comparison, we use the Cumulative Dis-
tribution Function (CDF) of the throughput time which we also use as our notion of
throughput time KPI. Note that our approach is not limited to this definition of the
throughput time KPI. Any definition works as long as it is monotone, i.e., if the through-
put time increases, then the KPI should decrease.

Definition 5 (Throughput time KPI). Let KTT be the random variable describing
the throughput time, let P(KTT ≤ x) be the probability that KTT is at-most x, then the
throughput time KPI, denoted by FTT , is defined as: ∀x(FTT (x) = P(KTT ≤ x)).

The throughput time KPI of a run is denoted by FTT (MC,M,P ). Since our models
consist of a collection of runs with a weight function, we define the throughput time of
a model as the weighted sum of the throughput times of the runs.

Definition 6 (Throughput time of a model). Let MC = (A,R,MM ,Ka,KPT ) be a
model collection, let M = (PP , w, ar) be a model in MM , then the throughput time
of M in steady state is the random variable KTT (MC,M) ∈ K, which is defined as
follows:

KTT (MC,M) =
∑

P∈PP

w(P ) ·KTT (MC,M,P )

The throughput time KPI of a model is denoted by FTT (MC,M). Having the
throughput time KPI of a model in place, we can now define the at-least-as-good re-
lation between two models.

Definition 7 (At-least-as-good models). Let MC = (A,R,MM ,Ka,KPT ) be a model
collection, and let M , M ′ be two models from MM , we say M is at-least-as-good as
M ′, denoted by M ≥M ′ if ∀x(FTT (MC,M)(x) ≥ FTT (MC,M ′) (x)).

By having that the throughput time KPI of M is above that of M ′, i.e., the prob-
ability that it stays below a certain point x is greater, we guarantee that in general M
has a lower throughput time. It is, however, still possible that for an individual case
the throughput time of M ′ is better than M . We are, however, interested in an overall
comparison.

5



Taking the models from the collection in Fig. 2, Fig. 3 shows the possible throughput
time KPIs for the models. By having that the KPI of M is above M ′, we conclude that
M is at-least-as-good as M ′.

Having our definitions of throughput time on run and model level and the corre-
sponding throughput time KPIs, we define the at-least-as-good relation between runs
and show how this can be deduced based on the structures of the runs. Afterwards, we
show how the at-least-as-good relation between runs can be leveraged to the model to
provide the at-least-as-good relation.

3.1 At-least-as-good runs

Prior to giving the structural requirements on two runs for the at-least-as-good rela-
tion, we shall define first when a run is at-least-as-good as another run in terms of the
throughput time KPI.

Definition 8 (At-least-as-good runs). Let MC = (A,R,MM ,Ka,KPT ) be a model
collection, let M = (PP , w, ar), M ′ = (PP ′, w′, ar′) be two models from MM , and
let P , P ′ be two runs from PP and PP ′ respectively, then we say P is at-least-as-good
as P ′, denoted by P ≥ P ′, if ∀x(FTT (MC,M,P )(x) ≥ FTT (MC,M ′, P ′)(x)).

Informally when comparing the structures of the runs P and P ′, if P has fewer
work, or has more flexibility in the order of executing activities, then P can do things
faster than P ′ (assuming M has not less resources per activity). We operationalise this
by comparing the vertices in P and P ′ (fewer vertices is fewer work), and by comparing
the edges (flexibility in the ordering). Next to this, we need to make the requirement that
we only compare vertices with the same label. When comparing two runs, we abstract
from the respective models these runs are part of. In the comparison of two models, we
shall elaborate on this.

Since which resource can execute which activity is defined on model level, we first
introduce when a model M is at-least-as-good as M ′ with respect to the resource allo-
cation, denoted by M ≥ar M ′.

Definition 9 (Structurally at-least-as-good resource allocation). Let MC = (A,
R,MM ,Ka,KPT ) be a model collection, let M = (PP , w, ar), M ′ = (PP ′, w′,
ar′) be two models from MM , then we say M is at-least-as-good as M ′ with re-
spect to the resource allocation, denoted by M ≥ar M ′, if dom(ar′) ⊆ dom(ar) ∧
∀r∈dom(ar′)ar(r) = ar′(r), i.e., every activity in M can be performed by at least the
same resources than that activity in M ′.

x

FTT (x)
FTT (MC,M ′)(x) =

FTT (MC,M)(x) =

Fig. 3: Example throughput time KPIs for the models from Fig. 2.

6



Definition 10 (Structurally at-least-as-good runs). Let MC = (A,R,MM ,Ka,KPT )
be a model collection, let M = (PP , w, ar), M ′ = (PP ′, w′, ar′) be two models from
MM such that M ≥ar M ′, let P = (V,E, `), P ′ = (V ′, E′, `′) be two runs from
PP and PP ′, and let map ∈ V → V ′ be an injective mapping from vertices in P to
vertices of P ′, then we say P is structurally at-least-as-good as P ′ given mapping map
(denoted by P ≥map

s P ′) if and only if:

1. {map(v) | v ∈ V } ⊆ V ′, every vertex in P is mapped onto some vertex in P ′;
2. {(map(u),map(v)) | (u, v) ∈ E+} ⊆ E′+, every path in P is mapped to some

path in P ′ (where E+ and E′+ are the partial orders of the vertices);
3. ∀v∈V `(v) = `′(map(v)), every vertex in P is mapped onto a vertex in P ′ labelled

with the same activity.

We say P is structurally at-least-as-good as P ′ (denoted by P ≥s P ′), if a mapping
map : V → V ′ exists such that P ≥map

s P ′.

For Def. 10, we take two runs and compute the partial order, e.g., if we take P1 and
P ′
1 from Fig. 2, we obtain the partial orders in Fig. 4 (we have given the vertices from

P ′
1 different names). Between these partial orders, we create a mapping which does not

need to be unique, e.g., v4 could also have been mapped onto v′6. Taking also ar and
ar′ from Fig. 2 into account, we say P1 is structurally at-least-as-good as P ′

1 since there
exists a mapping such that: (a) each vertex in P1 is mapped onto a vertex in P ′

1, (b) P1

has fewer edges in the partial order, and (c) on model level, a can be executed by r1 and
r6.

We first prove that the throughput time per vertex in a run P is at-least-as-good
as the throughput time of the vertex on which it is mapped in a run P ′. Afterwards,
we prove that if the throughput times per vertex are at-least-as-good, then also P is at-
least-as-good as P ′. The throughput time of a vertex v consists of the queue time and the
processing time. Queue time is the time between the moment that a work item arrives
at v and the moment the resource starts working it. The processing time is the time
between when a resource starts working on a particular work item at v and the moment
it is finished. We denote the throughput time KPI of a vertex by: FTT (MC,M,P, v).

One vertex is at-least-as-good as another vertex if the throughput time KPI of the
former is at-least-as-good as the latter.

a b c d

P1 v1 v2 v3 v4

dea b c

v′1 v′2 v′3 v′4 v′5 v′6
P ′
1

map

Fig. 4: The partial orders of the runs P and P ′ with a mapping map such that P ≥map
s

P ′. Note that a mapping where v4 is mapped onto v′6 would also have been fine.

7



Definition 11 (At-least-as-good vertices). Let MC = (A,R,MM ,Ka,KPT ) be a
model collection, let M = (PP , w, ar), M ′ = (PP ′, w′, ar′) be two models from
MM , let P , P ′ be two runs from PP , PP ′ respectively, and let v, v′ be two vertices
from V and V ′, we say v is at-least-as-good as v′, denoted by v ≥ v′ if
∀x(FTT (MC,M,P, v)(x) ≥ FTT (MC,M ′, P ′, v′)(x)).

Prior to giving the proof that the vertices in P are at-least-as-good as the vertices
they are mapped on in P ′, we first have to make the following assumptions:

Assumption set 1

1. The amount of arriving cases per time unit is exactly the same per run;
2. There is a single First In First Out (FIFO) queue per activity from which resources

execute work items. This FIFO queue contains all the work items currently in the
queues of the vertices labelled with a particular activity;

3. Having more resources for an activity cannot increase the queue time of the FIFO
queue for that activity if the amount of cases per time unit stays exactly the same.

Theorem 1. Let MC = (A,R,MM ,Ka,KPT ) be a model collection, let M = (PP ,
w, ar), M ′ = (PP ′, w′, ar′) be two models from MM such that M ≥ar M ′, let
P = (V,E, `), P ′ = (V ′, E′, `′) be two runs from PP , PP ′ respectively, let map
be a mapping such that P ≥map

s P ′, and let v, v′ be two vertices from V and V ′

such that map(v) = v′. If the assumptions in Assumption set 1 hold, then we have
∀x(FTT (MC,M,P, v)(x) ≥ FTT (MC,M ′, P ′, v′)(x)).

Proof. Recall that the throughput time of a vertex consists of queue time and processing
time. By KPT ’s nature and the fact that v and v′ have the same label, we know that
their processing times are the same. Now we only need to focus on the queueing time
per vertex. We shall do this via the FIFO queue per activity. From Def. 9, we know
that every activity in P has at-least the same resources as in P ′. Furthermore, Def. 10
sub 1 gives us together with Def. 10 sub 3 that, for a particular activity, P has at-
most the same amount of vertices labelled with this activity as P ′. This, together with
assumptions 1 and 3, yields that the queue time per activity in P is at-most that in P ′.
From assumption 2, we can conclude that the queue time of v is at-least-as-good as the
queue time of v′ as the queue time per vertex is the queue time per activity. Combining
that the queue time and the processing time are both at-least-as-good, we conclude that
∀x(FTT (MC,M,P, v)(x) ≥ FTT (MC,M ′, P ′, v′)(x)). ut

Assumptions 1 and 3 in Assumption set 1 allow us to compare the queue times for
a particular activity. This is not yet enough for comparing the queue times between
v and v′, e.g., it might be that the queue time on activity level is smaller, but, at a
particular vertex, it could have increased. By having the FIFO queue, we prevent this
from happening.

Having shown that the vertices in P are at-least-as-good as the vertices they are
mapped on in P ′, we can now prove that P is at-least-as-good as P ′.

Theorem 2. Let MC = (A,R,MM ,Ka,KPT ) be a model collection, let M = (PP ,
w, ar) and M ′ = (PP ′, w′, ar′) be two models from MM such that M ≥ar M ′, let

8



P P ′

Base case:
v map(v)

Induction hypothesis:

≥

x1

x2

xn

≥
≥

≥

map(x1)

map(x2)

map(xn)

x1 x2 xn

v map(v)

map(x1) map(x2) map(xn) y1 ym

≥

Induction step:

Fig. 5: Supporting figure for our proof of P ≥ P ′.

P = (V,E, `) be a run of PP , let P ′ = (V ′, E′, `′) be a run of PP ′, and let map be
a mapping such that P ≥map

s P ′. If the assumptions in Assumption set 1 hold, then we
have ∀x(FTT (MC,M,P )(x) ≥ FTT (MC,M ′, P ′)(x)).

Proof. We shall prove this by induction on the structure of the runs (see also Fig. 5)
which we can do since our runs are DAGs. For this, we look at the throughput time
up-to and including a particular vertex. In the base case, we take the vertices from P
which do not have any incoming edges. For each vertex v, we know there is a ver-
tex map(v) and from Thm. 1, we know the throughput time of v is at-least-as-good as
that of map(v). In P ′, map(v) can have incoming edges but incoming edges cannot de-
crease the throughput time. Hence we have that the throughput time up-to and including
v is at-least-as-good as map(v).

For the induction hypothesis, we assume that at least the vertices X = {x1, . . . ,
xn} are at-least-as-good as their mapped vertices. What remains to prove is that given
a v such that the source of all its incoming edges are in X , i.e., ∀(u, v) ∈ E+ : u ∈ X ,
we can conclude that v ≥ map(v). For this it is important to see that the throughput
time up-to and including a vertex is the maximum over its incoming edges plus the
throughput time of the vertex itself. Furthermore, from Def. 10 sub 2, we know that if
there is an edge between two vertices in P , it is also in P ′. This means that ∀x ∈ X :
(map(x),map(v)) ∈ E′+. Finally, it might be that map(v) has more incoming edges,
e.g., y1, . . . , ym in Fig. 5. Given the fact that the throughput time of a vertex is the
maximum over its incoming edges plus the throughput time of the vertex itself, we can
conclude that the maximum over the incoming edges of v is at-most that of map(v) and
that the vertices y1, . . . , ym cannot decrease the maximum as it is a monotone function.
Using Thm. 1, we also know that v is at-least-as-good as map(v). Hence the throughput
time up-to and including v is at-least-as-good as map(v).

9



By having deduced that for all vertices in P the throughput time up-to and includ-
ing that vertex is at-least-as-good as their mapped vertex in P ′, we can conclude that
∀x(FTT (MC,M,P )(x) ≥ FTT (MC,M ′, P ′) (x)) as the throughput time of a run is
the maximum over all throughput times up-to and including the vertices. ut

After showing the correctness of the at-least-as-good relation between runs, we now
define our at-least-as-good relation between models. The at-least-as-good relation be-
tween models holds if we can find a valid matching graph between the runs of the mod-
els. Graphically, a matching graph can be seen as a bipartite graph (Fig. 6). The runs of
M are on the left-hand side and the runs of M ′ are on the right-hand side together with
their weights. An edge between two runs indicates that the run on the left-hand side is
at-least-as-good as the run on the right-hand side, e.g., P1 is at-least-as-good as P ′

1. As
the weight of a run gives the probability of this run occurring it also gives the fraction of
cases arriving for this run, we need to take this into account in the matching graph due
to Thm. 2. Therefore, we have weights on the edges in the matching graph indicating
the weight of the runs when they are compared. For instance, the 0.5 between P2 and
P ′
1 indicates that in the comparison of P2 and P ′

1, we give them both a weight of 0.5.
As the weights on the edges in the matching graph indicate the weight of the runs

when they are compared, we need to guarantee that the sum of the weights on the
outgoing edges of a run is always that of the actual weight of that run. The same holds
for the weights of the incoming edges of a run. The weights in the matching graph
should be in [0, 1]. A (valid) matching graph is defined as:

Definition 12 ((Valid) Matching Graph). Let MC = (A,R,MM ,Ka,KPT ) be a
model collection, and let M = (PP , w, ar) and M ′ = (PP ′, w′, ar′) be two models
from MM such that M ≥ar M ′, then the matching graph, between M and M ′, denoted
by matchM,M ′ , is defined as: matchM,M ′ ∈ (PP×PP ′)→ [0, 1]. We say matchM,M ′

is valid if and only if:

– ∀(P, P ′) ∈ dom(matchM,M ′) : P ≥s P ′, if there is an edge between two runs in
the matching graph, then the first is structurally at-least-as-good as the latter;

– ∀P ∈ PP : w(P ) =
∑

(P, P ′) ∈ dom(matchM,M ′) : matchM,M ′(P, P ′), the
weights of the outgoing edges are the same as the weight of the run;

– ∀P ′ ∈ PP ′ : w′(P ′) =
∑

(P, P ′) ∈ dom(matchM,M ′) : matchM,M ′(P, P ′), the
weights of the incoming edges are the same as the weight of the run.

We can now prove the following:

Theorem 3. Let MC = (A,R,MM ,Ka,KPT ) be a model collection, let M = (PP ,
w, ar), M ′ = (PP ′, w′, ar′) be two models from MM , then if we have a valid matching
graph between M and M ′, it follows that ∀x(FTT (MC,M)(x) ≥ FTT (MC,M ′)(x)).

Runs of M Runs of M ′

P1

P2

P ′
1

w w′

0.5

0.5 10.5

0.5

Fig. 6: An example valid matching graph.

10



Proof. The throughput time KPI of a model is defined on the throughput time of a
model which in turn is built-up from the throughput times of the individual runs. From
our valid matching graph, we obtain that, disregarding that resources are shared between
runs, M is at-least-as-good as M ′. This follows from the fact that for every run P in
PP , there is a collection of runs in PP ′ to which P is at-least-as-good and the weight
of P is the same as the weight of the collection of runs (using the edges in the matching
graph). By having equal weights, we fulfill the first assumption in Assumption set 1 as
the weight of a run is directly linked to the amount of arriving cases per time unit.

We now only have to pay attention to the fact that resources are shared amongst
runs which has an effect on the queue times. From Thm. 1, we obtain that the queue
time per activity for a run P is at-least-as-good as the queue time of that activity in the
run P ′ for which it holds that P ≥s P ′ (under an equal amount of arriving cases per
time unit). As this holds under any amount of arriving cases (as long as the model as
a whole stays in steady state), this also holds when Ka amount of cases arrive. Using
the edges in the valid matching graph, we can distribute the Ka amongst the runs. By
taking a single queue per activity for the whole model, we can combine the queues per
run into this and we know the queue time of an activity in M is at-least-as-good as the
queue time of that activity in M ′. Hence we can conclude that: ∀x(FTT (MC,M)(x) ≥
FTT (MC,M ′)(x)). ut
Using the matching graph, it becomes possible to structurally compare models with
each other. If we are able to obtain a valid matching graph, we can conclude that one
model is at-least-as-good as another model. In the next section, we apply our technique
to show the gains it may bring.

4 Experimentation

For our experimentation, we have randomly generated 30 model collections varying in
size (16 to 12288 models)3. From these model collections, we have randomly selected
a subset of the models within a collection. On these subsets, we apply our monotonicity
approach and compare this to naively simulating each model in this collection. Our
goal is to find the models which have a significantly lower throughput time than the
other models while spending less time on simulations. In our explorative experiment,
we use Petra [2] in conjunction with the simulation engine L-SIM4, which is BPSim [3]
compliant. We have chosen to generate the model collections ourselves as real-world
model collections lack simulation data. Note that by simulating the models we obtain
an approximation of the mean value of a KPI and not the exact probability distribution.

4.1 Generating the model collection

To create a model collection, we randomly generate a single model as a basis. The base
model is generated according to the following characteristics: The number of activities

3 The data and results can be downloaded from https://svn.win.tue.nl/repos/prom/Documentation/
Petra/BPM2015SchunselaarCaseStudyData.7z.

4 http://www.lanner.com/en/l-sim.cfm

11



is normally distributed with mean 20 and variance 4; The number of resources per
activity is normally distributed with mean 7 and variance 0.5.

Having generated the activities, we create bottom-up a block-structured process
model out of the activities. We first randomly select a number of activities (normally
distributed with mean 5 and variance 1) and place these activities in one of the follow-
ing relations: sequence, parallel, choice (exclusive and inclusive), or in an iteration. All
of these relations have the same probability of being selected. Afterwards, we take the
remaining activities and the newly added relation and again select a relation to hold. We
keep on doing this until all activities are related.

For our model collection, we have the following characteristics: All processing
times for activities (KPT ) are normally distributed with a mean of 10 minutes and a
variance of 1 minute; The inter-arrival time of new cases (Ka) is negative exponentially
distributed with a mean of 15 minutes.

Each model within the collection is subsequently obtained by randomly removing
parts of the base model. Prior to adding the newly created model to the collection,
we verify that the model ends up in steady state by doing a simulation to check the
development of the utilisation rates. If the model ends up in steady state, it is added,
otherwise it is discarded.

4.2 Analysis of a model collection using monotonicity and naively

In the naive case, all models from the actual subset are simulated to obtain estimated
throughput times. We propose to first determine the monotonicity relation between the
models in a collection and then in the second stage, only to simulate the most promising
models until all non-simulated models are dominated by the simulated models. In order
to determine the monotonicity relation, we first decompose the process model into the
various runs. For this, we unroll the iterations 0 to 2 times.

For each pair of runs, we create the mapping (if it exists) in such a way that the
first run is structurally at-least-as-good as the second run. Since the computation of
this mapping is quite expensive in terms of running time, our implementation employs
a heuristic to balance between the time needed for simulation and the time needed for
computing the monotonicity, i.e., if we expect that computing the monotonicity between
two models will take more time than simulating the individual models, then we prefer
to just run the simulation. In previous experiments, we have determined that 10,000 for
the product of the number of runs is a good value for the heuristic, e.g., if one model
allows for 1,000 runs and the other model for 12, then the product is 12,000 and the
monotonicity will not be computed. As a result, we would have no information whether
the one model is at-least-as-good as the other or vice versa.

The analysis is done for increasing sizes of subsets and earlier subsets are main-
tained, i.e., models are only added. To limit the variability in results for the same model,
we only simulate each model once and use these outcomes throughout the experiment.

4.3 Results

We gain on average a reduction of 40% in total time to find the optimal models (Fig. 7).
Also interesting to note is that the overhead is around 3%, i.e., if the monotonicity is

12



Fig. 7: Relative quantitative comparison. 100% is the time of the naive approach.

not reducing the amount of models which need to be analysed, this does not incur a
heavy computational penalty also due to our earlier introduced heuristic. The reduction
of models which need to be inspected is similar to the reduction in simulation time.
Note that the minimum and maximum do not belong to a single model collection but
instead it is minimum and maximum over all model collections.

We can see in Fig. 8 that only 8 out of 20 models had to be simulated to obtain the
optimal models for model collection 2. Each model that has a cross means that there
was a model at-least-as-good as this model and that model was not optimal.

The models 1, 4, and 6 from model collection 2 are depicted in Fig. 9 using the
BPMN formalism. The models 4 and 6 can be obtained by removing the indicated
part. Our monotonicity notion concludes that model 4 is at-least-as-good as 6. After
simulating model 4 (which is not optimal), we know model 6 cannot be better and
hence is not simulated. We cannot conclude monotonicity between model 4 and model 1
because of the difference in the choices they can make which gives a different weighing
to the runs and hence both need to be analysed.

4.4 Threats to validity

A threat to the validity of our experiments is the fact that we simulate the models be-
forehand and use the results and running times of them. By doing so, we gain a higher
similarity in the output of the monotonicity and naive implementation, i.e., the same
models are considered the best model. As such, we can better compare the results from
both approaches. But at the same time, we introduce look-up time necessary for load-
ing the analysed model in main memory which is beneficial for our approach. We argue
that the overhead of this is insignificant as the simulation itself is at least 3 orders of
magnitude larger.

Another threat to the validity of the results lies in our assumptions on the models.
The assumptions that a resource can only perform a single activity and the fact that
we have dedicated resources to the model are strict, but without these we can have
counterintuitive results. For instance, having a resource 100% dedicated to a process

13



Fig. 8: Analysis results for model collection 2. The crosses indicate models which did
not have to be analysed thanks to monotonicity.

can be significantly different than having two resources each 50% dedicated to the pro-
cess [4]. Furthermore, having a resource only available on Monday might even favour
more edges in the run as this might limit the possibility that workitems become available
after Monday. By having fewer edges, the variance of the throughput time can increase
resulting in false positives.

5 Related Work

By analysing redesign alternative encapsulated in a model collection, our work can be
positioned on the intersection of model collections, and performance evaluation. We
first discuss work from each of the two areas and then discuss work on the intersection.

In [5], the authors list the research areas within model collections. Often these model
collections lack sufficient information for quantitative analysis, i.e., the context is miss-

J

P

D O

I

C

E

K

L

F

Not in model 4

Not in model 6

Fig. 9: The models 1, 4, and 6 from model collection 2.

14



ing, e.g., the arrival process of new cases, duration of activities, etc. If the model col-
lection is viewed from a specific context, then our technique can be most beneficial in
querying the collection of models. For instance, in PQL [6], the user can specify she
is interested in models where an activity A is eventually followed by an activity B. As
there might be a large amount of models returned from a query, our technique can be
used to structurally order these models based on the throughput time. In this way, the
user is immediately presented with the most promising models whilst adhering to the
earlier specified structural requirements.

Within performance evaluation, the idea of monotonicity is not new and in queueing
theory it has already been pursued [7]. In [7], the notion of monotonicity is similar but
they focus on the parameters of the network and not the topology of the network. The
work in [8] is similar to the work in [7] but now defined on continuous Petri nets. Since
runs can be translated to Petri nets, this might be an interesting approach to use in the
at-least-as-good relation between runs.

In [9], an approach is presented to evaluate when certain changes to the structure
of the process model are appropriate. Starting from commonalities in reengineered pro-
cesses, the paper deduces under which circumstances a change to the structure of the
model is beneficial. The majority of the authors’ ideas is not tailored towards through-
put time but some ideas can be applied to our setting. These ideas are mainly on how
resources perform their tasks.

So-called Knock-Out systems are discussed in [10] and heuristics for optimising
these are defined. A Knock-Out system is a process model where after each task or
group of tasks in case they are in parallel a decision is made to continue with the pro-
cess or to terminate. The goal is to rearrange the tasks in such a way that the resource
utilisation and flow time (throughput time) are optimised whilst adhering to constraints
on the order of tasks encoded in precedence relations. By having an approach starting
from a single model, this approach is not directly applicable to comparing two models.

In [11], a tool called KOPeR (Knowledgebased Organizational Process Redesign)
is presented. KOPeR starts from a single model and identifies redesign possibilities.
These redesign possibilities are simulated to obtain performance characteristics. This
approach is not tailored towards directly comparing two models to determine which is
at-least-as-good but our approach can be used to discard models prior to simulation.

In [12], process alternatives are analysed which have been obtained by applying
redesign principles. Similar to the work in [11], our approach can aid in reducing the
amount of to-be-analysed redesign options.

In our previous work, we have presented Petra a toolset for analysing a family of
process models [13]. A family of process models is similar to a model collection but
models are closer related. The work here can improve Petra by a-priori sorting the
process models and only analyse the models most promising.

6 Conclusion

We have shown an approach to structurally compare the models within a model collec-
tion resulting in an at-least-as-good relation between models based on throughput time.
This at-least-as-good relation can be used to minimise the effort to simulate a collection

15



of highly similar models. This is particularly useful if redesigning an existing process
where different improvement opportunities exist. Our approach poses a number of re-
strictions on the resources. In particular, we demand that resources can only execute a
single activity and that they are truly dedicated to the process in question.

Next to showing the theoretical validity our approach, we also have applied our
approach in an experimental setting. Within this experiment, we have generated our
own model collections and demonstrated the gains. We gained on average a reduction
of more than 40% of the models which no longer needed to be simulated. Furthermore,
we obtained a reduction of 40% in the time it takes to find the optimal models. Using
our technique, simulation becomes a much more feasible approach, supporting a more
quantitative approach to process redesign.

For future work, an interesting question is which of our assumptions can be relaxed
to allow for the inclusion of a wider set of models to be considered. In particular, we
want to look into whether runs have to be directed or whether they are also allowed to
be undirected. This would allow us to compare different sequences of tasks and greatly
increase our applicability.

References
1. Desel, J.: Validation of Process Models by Construction of Process Nets. In: BPM. Volume

1806 of Lecture Notes in Computer Science., Springer (2000) 110–128
2. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.: Petra: Process

model based Extensible Toolset for Redesign and Analysis. Technical Report BPM Center
Report BPM-14-01, BPMcenter.org (2014)

3. Gagne, D., Shapiro, R.: BPSim 1.0. http://bpsim.org/specifications/1.0/WFMC-BPSWG-
2012-01.pdf (Feb 2013)

4. Aalst, W.M.P. van der, Nakatumba, J., Rozinat, A., Russell, N.: Business Process Simulation.
In: Handbook on Business Process Management 1. International Handbooks on Information
Systems. Springer Berlin Heidelberg (2010) 313–338

5. Dijkman, R.M., La Rosa, M., Reijers, H.A.: Managing Large Collections of Business Process
Models - Current techniques and challenges. Computers in Industry 63(2) (2012) 91–97

6. Hofstede, A.H.M. ter, Ouyang, C., La Rosa, M., Song, L., Wang, J., Polyvyanyy, A.: APQL:
A Process-Model Query Language. In Song, M., Wynn, M.T., Liu, J., eds.: AP-BPM 2013.
Volume 159 of Lecture Notes in Business Information Processing., Springer (2013) 23–38

7. Suri, R.: A Concept of Monotonicity and Its Characterization for Closed Queueing Net-
works. Operations Research 33(3) (1985) pp. 606–624

8. Mahulea, C., Recalde, L., Silva, M.: Basic Server Semantics and Performance Monotonicity
of Continuous Petri Nets. Discrete Event Dynamic Systems 19(2) (2009) 189–212

9. Buzacott, J.A.: Commonalities in Reengineered Business Processes: Models and Issues.
Manage. Sci. 42(5) (May 1996) 768–782

10. Aalst, W.M.P. van der: Re-engineering Knock-out Processes. Decision Support Systems
30(4) (2001) 451–468

11. Nissen, M.E.: Redesigning Reengineering Through Measurement-Driven Inference. MIS
Quarterly 22(4) (1998) 509–534

12. Netjes, M.: Process Improvement: The Creation and Evaluation of Process. PhD thesis,
Eindhoven University of Technology (2010)

13. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.: Petra: A
Tool for Analysing a Process Family. In: PNSE’14. Number 1160 in CEUR Workshop
Proceedings, CEUR-WS.org (2014) 269–288

16


