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Abstract. Overprocessing waste occurs in a business process when ef-
fort is spent in a way that does not add value to the customer nor to
the business. Previous studies have identified a recurrent overprocessing
pattern in business processes with so-called “knockout checks”, meaning
activities that classify a case into “accepted” or “rejected”, such that
if the case is accepted it proceeds forward, while if rejected, it is can-
celled and all work performed in the case is considered unnecessary. Thus,
when a knockout check rejects a case, the effort spent in other (previ-
ous) checks becomes overprocessing waste. Traditional process redesign
methods propose to order knockout checks according to their mean ef-
fort and rejection rate. This paper presents a more fine-grained approach
where knockout checks are ordered at runtime based on predictive ma-
chine learning models. Experiments on two real-life processes show that
this predictive approach outperforms traditional methods while incurring
minimal runtime overhead.
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1 Introduction

Overprocessing is one of seven types of waste in lean manufacturing [1]. In a
business process, overprocessing occurs when effort is spent in the performance
of activities to an extent that does not add value to the customer nor to the
business. Overprocessing waste results for example from unnecessary detail or
accuracy in the performance of activities, inappropriate use of tools or methods
in a way that leads to excess effort, or unnecessary or excessive verifications [2].

Previous studies in the field of business process optimization have identified
a recurrent overprocessing pattern in business processes with so-called “knock-
out checks” [3,4]. A knockout check is an activity that classifies a case into
“accepted” or “rejected”, such that if the case is accepted it proceeds forward,
while if rejected, all other checks are considered unnecessary and the case is ei-
ther terminated or moved to a later stage in the process. When a knockout check
rejects a case, the effort spent in other (previous) checks becomes overprocessing
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waste. This overprocessing waste pattern is common in application-to-approval
processes, where an application goes through a number of checks aimed at classi-
fying it into admissible or not, such as eligibility checks in a University admission
process, liability checks in an insurance claims handling process, or credit wor-
thiness checks in a loan origination process. Any of these checks may lead to
an application or claim being declared ineligible, effectively making other checks
irrelevant for the case in question.

A general strategy to minimize overprocessing due to the execution of un-
necessary knockout checks is to first execute the check that is most likely to
lead to a negative (“reject”) outcome. If the outcome is indeed negative, there
is no overprocessing. If on the other hand we execute first the checks that lead
to positive outcomes and leave the one that leads to a negative outcome to the
end, the overprocessing is maximal – all the checks with positive outcome were
unnecessary. On the other hand, it also makes sense to execute the checks that
require less effort first, and leave those requiring higher effort last, so that the
latter are only executed when they are strictly necessary. These observations lead
to a strategy where knockout checks are ordered according to two parameters:
their likelihood of leading to a negative outcome and the required effort.

Existing process optimization heuristics [3,5] apply this strategy at design-
time. Specifically, checks are ordered at design-time based on their rejection rate
and mean effort. This approach achieves some overprocessing reduction, but
does not take into account the specificities of each case. This paper proposes
an approach that further reduces overprocessing by incorporating the above
strategy into a predictive process monitoring method. Specifically, the likelihood
of each check leading to a positive outcome and the effort required by each check
are estimated at runtime based on the available case data and machine learning
models built from historical execution data. The checks are then ordered at
runtime for the case at hand according to the estimated parameters.

The rest of the paper is organized as follows. Section 2 gives a more detailed
definition of knockout checks and discusses related work. Section 3 presents
the proposed knockout check reordering approach. Next, Section 4 discusses an
empirical evaluation of the proposed approach versus design-time alternatives
based on two datasets related to a loan origination process and an environmental
permit process. Finally, Section 5 draws conclusions and outlines future work.

2 Background and Related Work

This paper is concerned with optimizing the order in which a set of knockout
checks are performed in order to minimize overprocessing. The starting point
for this optimization is a knockout section, defined as a set of independent bi-
nary knockout checks. By independent we mean that the knockout checks in
the section can be performed in any order. By binary we mean that each check
classifies the case into two classes, hereby called “accepted” and “rejected”. And
by knockout we mean that if the check classifies a case as “rejected”, the case
jumps to a designated point in the process (called an anchor) regardless of the
outcome of all other checks in the section. An anchor can be any point in the
process execution either before or after the knockout section. In the rest of the
paper, we assume that the anchor point is an end event of the process, meaning
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that a case completes with a negative outcome as soon as one of the checks in
the knockout section fails.

For example, a loan application process in a peer-to-peer lending marketplace
typically includes several knockout checks. Later in this paper we will examine
one such process containing three checks: identity check; credit worthiness check;
and verification of submitted documents. Any of these checks can lead to rejec-
tion of the loan, thus the three checks constitute a knockout section.

The order of execution of checks in a knockout section can impact on overpro-
cessing waste. For example, in the above knockout section, if the identity check is
completed first and succeeds and then the credit worthiness check is completed
and leads to a rejection, then the identity check constitutes overprocessing, as it
did not contribute to the outcome of the case. Had the credit worthiness check
been completed first, the identity check would not have been necessary.

Van der Aalst [3] outlines a set of heuristics for redesigning knockout sec-
tions. These heuristics resequence the knockout checks according to the average
processing time, rejection rate and setup time of each check. One heuristic is to
execute the checks in descending order of rejection rate, meaning that the checks
that are more likely to reject a case are executed first. A more refined heuris-
tic is one where the checks are executed in descending order of the product of
their rejection rate times their required effort (average processing time). In other
words, checks are ordered according to the principle of “least effort to reject” –
checks that require less effort and are more likely to reject the case come first.
This idea is identified as a redesign best practice by Reijers et al. [5] and called
the “knockout principle” by Lohrmann and Reichert [6].

Pourshahid et al. [7] study the impact of applying the knockout principle in a
healthcare case study. They find that the knockout pattern in combination with
two other process redesign patterns improve some of the process KPIs, such as
average approval turnaround time and average cost per application. Niedermann
et al. [8] in the context of their study on process optimization patterns introduce
the “early knockout” pattern. The idea of this latter pattern is moving the whole
knockout section to the earliest possible point.

All of the above optimization approaches resequence the knockout checks at
design time. In contrast, in this paper we investigate the idea of ordering the
checks at runtime based on the characteristics of the current case. Specifically,
we seek to exploit knowledge extracted from historical execution traces in order
to predict the outcome of the knockout checks and to order them based on these
predictions. In this respect, the present work can be seen as an application of
predictive process monitoring.

Predictive process monitoring is a branch of process mining that seeks to
exploit event logs in order to predict how one or multiple ongoing cases of a
business process will unfold up to their completion [9]. A predictive monitoring
approach relies on machine learning models (e.g. classification models) trained
on historical traces in order to make predictions at runtime for ongoing cases.
Existing predictive process monitoring approaches can be classified based on
the predicted output or on the type of information contained in the execution
traces they take as input. In this respect, some approaches focus on the time
perspective [10], others on the risk perspective [11]. Some of them take advantage
only of a static snapshot of the data manipulated by the traces [9], while in
others [12,13], traces are encoded as complex symbolic sequences, and hence the
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successive data values taken by each data attribute throughout the execution
of a case are taken into account. This paper relies on the latter approach. The
main difference between the present work and existing predictive monitoring
approaches is that the goal is not to predict the outcome of the entire case,
but rather to predict the outcome of individual activities in the case in order to
re-sequence them.

The idea of using predictive monitoring to alter (or customize) a process
at runtime is explored by Zeng et al. [14] in the specific context of an invoice-
to-cash process. The authors train a machine learning model with historical
payment behavior of customers, with the aim of predicting the outcome of a
given invoice. This prediction is then used to customize the payment collection
process in order to save time and maximize the chances of successfully cashing
in the payment. In comparison, the proposal outlined in this paper is generally
applicable to any knockout section and not tied to a specific application domain.

3 Approach

In this section we describe the proposed approach to resequencing knockout
checks in order to minimize overprocessing. We first give an overview of the
entire solution framework and then focus on the core parts of our approach.

3.1 Overview

Given a designated knockout section in a process, the goal of our approach is to
determine how the checks in this section should be ordered at runtime in order to
reduce overprocessing waste. Accordingly, our approach pre-supposes that any
preexisting design-time ordering of the checks be relaxed, so that instead the
checks can be ordered by a runtime component.

The runtime component responsible for ordering the checks in a knockout
section relies on a predictive monitoring approach outlined in Figure 1. This ap-
proach exploits historical execution traces in order to train two machine learning
models for each check in the knockout section: one to predict the probability of
the check to reject a given case, and the second to predict the expected process-
ing time of the check. The former is a classification model while the latter is a
regression model.

To train these models, the traces of completed cases are first encoded as
feature vectors and fed into conventional machine learning algorithms. The re-
sulting models are then used at runtime by encoding the trace of an ongoing case
as a feature vector and giving it as input to the models in order to estimate the
expected processing effort of each allowed permutation of knockout checks and
to select the one with the lowest expected effort. To validate the models, once
the case has completed and the actual outcome of the checks is known, we com-
pute the actual processing effort and compare it with the minimum processing
effort required to either accept or knock out the case in question. The difference
between the actual and the minimum effort is the overprocessing waste.

3.2 Estimation of Expected Processing Effort

As mentioned in the introduction, overprocessing results from the activities that
add no value to the product or service. For example, if knockout activity rejects
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Fig. 1: Overview of the proposed approach.

a case, then the case is typically terminated and the effort spent on the previous
activities becomes overprocessing waste. Consequently, to minimize the over-
processing, we are interested in determining such a permutation σ of activities
that the case will be knocked out as early as possible. In the best case, the first
executed activity will knock out the case; in the worst case, none of them will
knock out the case. Furthermore, among all activities that could knockout the
case, the one with lowest effort represents the minimal possible processing effort
Wmin for a particular case to pass the knockout section. If none of the activities
knocks out the case, there is no overprocessing.

Since the minimal possible processing effort is constant for a particular pro-
cess case, minimizing overprocessing of a knockout section is essentially equiva-
lent to minimizing overall processing effort Wσ, which is dependent on the actual
number of performed activities M in the knockout section:

Wσ =

M∑
i=1

wi =

M∑
i=1

TiRi, 1 ≤M ≤ N (1)

where wi is the effort of an individual activity, Ti is its expected processing time
and Ri is the cost of a resource that performs the activity per unit of time, which
is assumed constant and known.

At least one activity needs to be performed, and if it gives a negative result,
we escape the knockout section. In the extreme case, if all activities are passed
normally, we cannot skip any activity; therefore M varies from 1 to N .

However, the actual processing effort can only be known once the case has
completed; therefore, we approximate it by estimating the expected processing

effort Ŵσ of a permutation σ of knockout checks. For that we introduce the
notion of reject probability. The reject probability P ri of a check is the probability
that the given check will yield a negative outcome, i.e. knock out the case. In
other words, it is the percentage of cases that do not pass the check successfully.

Let us suppose we have a knockout section with three independent checks.
Table 1 lists possible scenarios during the execution of the section depending on
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the outcome of the checks, as well as the probabilities of these scenarios and the
actually spent effort.

Table 1: Possible outcomes of checks during the execution of a knockout section
with three activities.

Outcome of checks Probability of outcome Actual effort spent
{failed} P r

1 w1

{passed; failed} (1− P r
1 )P r

2 w1 + w2

{passed; passed; failed} (1− P r
1 )(1− P r

2 )P r
3 w1 + w2 + w3

{passed; passed; passed} (1− P r
1 )(1− P r

2 )(1− P r
3 ) w1 + w2 + w3

Depending on the outcome of the last check, we are either leaving the knock-
out section proceeding with the case or terminating the case. In either situation,
the processing effort would be the same. Therefore, we can join the last two sce-
narios and formulate the expected effort to execute a knockout section of three
checks as:

Ŵσ = w1P
r
1 + (w1 + w2)(1− P r1 )P r2 + (w1 + w2 + w3)(1− P r1 )(1− P r2 ) (2)

Generalizing, the expected processing effort of a knockout section with N
activities can be computed as follows:

Ŵσ =

N−1∑
i=1

 i∑
j=1

wj · P ri
i−1∏
k=1

(1− P rk )

 +

N∑
j=1

wj ·
N−1∏
k=1

(1− P rk ). (3)

To estimate the expected processing effort we propose constructing predictive
models for reject probabilities P ri and processing times Ti (see Section 3.4).

Having found the expected processing effort for all possible permutations σ of
knockout activities, in our approach we select the one with the lowest expected
effort. To validate the results in terms of minimizing overprocessing, we need
to compare the actual processing effort Wσ taken after following the selected
ordering σ with Wmin.

3.3 Feature-encoding of Execution Traces

To find the reject probabilities and processing times of knockout checks we need
to build the corresponding predictive models. Business process execution traces
are naturally modeled as complex symbolic sequences, i.e. sequences of events
each carrying data payload consisting of event attributes. However, to be suitable
for conventional machine learning models, traces of completed process cases first
need to be encoded in the form of feature vectors. As was found by Leontjeva et
al. [12] who conducted an extensive empirical evaluation of various sequence en-
coding techniques and further investigated by Verenich et al. [13], an index-based
encoding achieves higher accuracy and reliability when making early predictions
of process outcome. Index-based encoding turns sequence into feature vectors
that include both static information, coming from the case attributes and dy-
namic information, contained in the event payload. It is lossless encoding in the
sense that all the data from the original log may be retained.
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3.4 Prediction of Reject Probability and Processing Time

To make online predictions on a running case, we apply pre-built (offline) models
using prefixes of historical cases before entering the knockout section. For exam-
ple, if a knockout section typically starts after the n-th event, as model features
we can use case attributes and event attributes of up to (n−1)-th event. For pre-
dicting reject probabilities of knockout activities we train classification models,
while for predicting processing times we need regression models.

In order to assess the predictive power for the trained classifiers, we use
the area under receiver operator characteristic curve (AUC) measure [15]. AUC
represents the probability that the binary classifier will score a randomly drawn
positive sample higher than a randomly drawn negative sample. A value of AUC
equal to 1 indicates a perfect ranking, where any positive sample is ranked higher
than any negative sample. A value of AUC equal to 0.5 indicates the worst
possible classifier that is not better than random guessing. Finally, a value of
AUC equal to 0 indicates a reserved perfect classifier, where all positive samples
get the lowest ranks.

As a baseline, instead of predicting the reject probabilities, we use constant
values for them computed from the percentage of cases that do not pass the
particular knockout activity in the log. Similarly, for processing times of activi-
ties, we take the average processing time for each activity across all completed
cases. This roughly corresponds to the approach presented in [3]. Another, even
simpler baseline, assumes executing knockout activities in a random order for
each case, regardless of their reject probabilities and processing times.

4 Evaluation

We implemented the proposed overprocessing prediction approach as a set of
scripts for the statistical software R, and applied them to evaluate our approach
using two publicly available real-life logs. In this section, we first discuss the
characteristics of the two datasets. Next, we evaluate the predictive models.
Finally we calculate the number of checks using the results of the prediction and
compare them with the two baselines described in Section 3.4.

A package containing the R scripts, the datasets and the results of this eval-
uation can be downloaded from http://apromore.org/platform/tools.

4.1 Datasets and Features

We used two datasets derived from real-life event logs. The first log records
executions of the loan origination process of Bondora [16], an Estonian peer-
to-peer lending marketplace; the second one originates from an environmental
permit process carried out by a Dutch municipality, available as part of the
CoSeLoG project [17]. Table 2 reports the size of these two logs in terms of
number of completed cases, and the rejection rate of each check. Each log has
three checks, the details of which are provided next.

Bondora dataset The Bondora dataset provides a snapshot of all loan data
in the Bondora marketplace that is not covered by data protection laws. These

http://apromore.org/platform/tools
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Table 2: Summary of datasets.

Dataset Completed Knockout checks
cases Name Rejection rate

Bondora
IdCancellation 0.080

40,062 CreditDecision 0.029
PostFundingCancellation 0.045

Environmental
permit

T02 0.005
1,230 T06 0.013

T10 0.646

data refers to two processes: the loan origination process and the loan repayment
process. Only the first process features a knockout section, hence we filtered out
the data related to the second process. When a customer applies for a loan, they
fill in a loan application form providing information such as their personal data,
income and liabilities, with supporting documents. The loan origination process
starts upon the receipt of the application and involves (among other activities)
three checks: the identity check (associated with event IdCancellation in the
log); the credit worthiness assessment (associated to event CreditDecision); and
the documentation verification (associated to event PostFundingCancellation).
A negative outcome of any of these checks leads to rejection of a loan application.

Bondora’s clerks perform these checks in various orders based on their expe-
rience and intuition of how to minimize work, but none of the checks requires
data produced by the others, so they can be reordered. Over time, the checks
have been performed in different orders. For example, during a period when
listing loans into the marketplace was a priority due to high investor demand,
loans were listed before all document verifications had been concluded, which
explains why the third check is called PostFundingCancellation, even though in
many cases this check is performed in parallel with the other checks.

In this log, the knockout section starts immediately after the case is lodged.
Thus, the only features we can use to build our predictive models are the case
attributes, i.e. the information provided by the borrower at the time of lodging
the application. These features are listed in Table 3, grouped into categories. A
more detailed description of each attribute is available from the Bondora Web
site [16]. It should also be noted that in this log there is no information about
the start time and the end time of each activity. Thus, we can only use it to
estimate the reject probabilities, not the processing times.

Environmental permit dataset The second dataset records the execution of
the receiving phase of an environmental permit application process in a Dutch
municipality [17]. The process discovered from the log has a knockout section
(see Figure 2) consisting of three activities: T02, to check confirmation of receipt,
T06, to determine necessity of stop advice, and T10, to determine necessity to
stop indication. In this scenario, the checks are not completely independent.
Specifically, T10 can only be done after either T02 or T06 has been performed
– all permutations compatible with this constraint are possible.

Another special feature of this knockout section is that in a small number
of cases some checks are repeated multiple times. If the first check in a case is
repeated multiple times, and then the second check is executed (and the first
check is not repeated anymore after that), we simply ignore the repetition, mean-
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Table 3: Features from the Bondora dataset.

Feature Description
Demographical features

Age Age group of the borrower (0-20, 20-30, etc)
Gender Borrower’s gender (0 Male,1 Woman, 2 Undefined)
Country Borrower’s country
New Whether or not a borrower has prior credit history
Language Borrower’s application language
Education Borrower’s education (1 Primary education, etc.)
MaritalStatus Borrower’s marital status (1 Married, etc.)
Dependents Number of children or other dependants
Work Employment status id (1 Unemployed, etc)
WorkTime Employment time with the current employer
WorkExperience Work experience in total
Area Occupation area (2 Mining, 3 Processing, etc.)
Home Home ownership type id (1 Owner, etc.)

Financial features
Income Income from principal employer
TotIncome Total income
LiabilitiesNum Number of liabilities before the loan
LiabilitiesMon Total monthly liabilities
D2I Debt to income ratio
A2I Applied amount to income, %
L2I Liabilities to income, %
PreviousLoanNr Number of previous loan applications
PreviousLoanValue Value of previous loan applications

Loan features
Amount Amount applied
Rate Maximum interest rate accepted in the application
Length The loan term
Usage Usage of loan (101 Working capital financing, etc.)
Type Application type (1 Timed funding, 2 Quick Funding)

ing that we treat the first check as not having been repeated by discarding all
occurrences of this check except the last one. Similarly, we discarded incomplete
cases as they did not allow us to assess the existence of overprocessing.

In this dataset, we could build our predictive models using both case at-
tributes as well as the attributes of the first event, namely Confirmation of
receipt as this event precedes the knockout section. The features derived from
this log are listed in Table 4.

Table 4: Features from the Environmental dataset.

Origin Feature Description

case attributes

Channel By which means the case has been lodged
Department Department responsible for the case
CaseGroup Group of the case responsible resource
CaseResource Resource responsible for the case

event attributes
Group Group of the event responsible resource
Resource Resource responsible for the event
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Fig. 2: Process map extracted from the environment permit log.

This log contains event completion timestamps but not event start times-
tamps. So also for this second log we do not have enough information to predict
the processing time of each check, and we can only work with reject probabilities.

4.2 Assessing the Predictive Power of the Models

We split each dataset into a training set (80% of cases) to train the models, and a
test set (20%) to evaluate the predictive power of the models built. As a learning
algorithm we applied support vector machine (SVM) classification, trained using
the e1071 package in R. This choice allows us to build a probability model which
fits a logistic distribution using maximum likelihood to the decision values of all
binary classifiers, and computes the a-posteriori class probabilities for the multi-
class problem using quadratic optimization [18]. Therefore, it can output not
only the class label, but the probability of each class. The probability of a zero
class essentially gives us an estimation of the reject probability.

It is important to notice that in both datasets the majority of cases pass
all the checks successfully, thus the datasets are highly imbalanced with respect
to the class labels. A naive algorithm that simply predicts all test examples as
positive will have very low error, since the negative examples are so infrequent.
One solution to this problem is to use a Poisson regression, which requires form-
ing buckets of observations based on the independent attributes and modeling
the aggregate response in these buckets as a Poisson random variable [19]. How-
ever, this requires discretization of all continuous independent attributes, which
is not desirable in our case. A simpler and more robust solution would be to un-
dersample positive cases. Weiss et al. [20] showed that for binary classification
the optimal class proportion in the training set varies by domain and ultimate
objective, but generally to produce probability estimates, a 50:50 distribution is
a good option. Thus, we leave roughly as many positive examples as there are
negative ones and discard the rest.
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To ensure the consistency of the results we apply ten-fold cross-validation.
Figure 3 shows the average ROC curves, across all ten runs. the AUC varies
from 0.812 (PostFundingCancellation) to 0.998 (CreditDecision) for the Bondora
dataset, and from 0.527 (T06 ) to 0.645 (T10 ) for the Environmental dataset.
The lower values in the latter dataset are due to the limited number of features
that can be extracted (see Table 4), as well as by the fact that the dataset has
much less completed cases for training (Table 2), which is further exacerbated
by having to remove many positive samples after undersampling.
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Fig. 3: ROC curves of predictive models for checks in Bondora (a) and Environ-
mental (b) datasets.

4.3 Evaluation of Overprocessing Reduction

As stated in Section 3.2, the actual processing effort can be calculated by For-
mula 1. However, since the necessary timestamps are absent from our datasets,
it is impossible to find the processing times Ti of the activities. Nor do we have
data about the resource costs Ri. Therefore, we assume TiRi = const = 1 for
all activities. Then the actual processing effort simply equals the number of per-
formed activities in the knockout section. For both datasets, Wσ = {1, 2, 3}. It
can be shown that in this case the optimal permutation σ that minimizes the ex-
pected processing is equivalent to ordering the knockout activities by decreasing
reject probabilities.

In Table 5 we report the average number of checks and percentage of over-
processing of our approach over the ten runs, against the two baselines (constant
probabilities for each check and random ordering – see Section 3.4). We found
that the actual number of performed checks in case of following our suggested or-
dering is less than the number of checks performed in either baseline. Specifically,
for the Bondora dataset we are doing only 1.22% more checks than minimally
needed, which represents a 2.62 percentage points (pp) improvement over the
baseline with constant probabilities and 4.51 pp improvement over the baseline
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with random ordering. However, for the environmental permit dataset the ad-
vantage of our approach over the constant probabilities baseline is very marginal.
This can be explained by the skewed distribution of the knockout frequencies
for the three checks in this dataset (the lowest knockout frequency being 0.5%
and the highest being 64.6%). Thus, it is clear that the check with the lowest
knockout frequency has to be executed at the end.

Table 5: Average number of performed checks and overprocessing for test cases.

Average # of checks Average overprocessing, %
Bondora Environmental Bondora Environmental

Optimal 21,563 416 0 0
Our approach 21,828 576 1.22 38.49
Constant P r

i ’s 22,393 577 3.85 38.89
Random 22,800 657 5.74 58.16

In addition, in Table 6 we report the number of cases with one, two or three
knockout checks performed. As shown before, for a dataset with three checks the
optimal number of checks is either one (if at least one check yields a negative
outcome) or three (if all checks are passed). Therefore, in the cases with two
checks, the second one should have been done first. In the Bondora dataset,
such suboptimal choices are minimized; for the environmental dataset, again,
our approach is just as good as the one that relies on constant probabilities.

Table 6: Distribution of number of checks across the test cases.

Ordering by Bondora Environmental
1 2 3 1 2 3

Optimal 1237 0 6775 163 0 83
Our approach 974 261 6777 2 158 86
Constant P r

i ’s 642 359 7011 3 155 88
Random 413 410 7189 1 78 167

4.4 Execution times

Our approach involves some runtime overhead to find the optimal permutation
as compared to the baseline scenario in which checks are performed in a prede-
fined order. For real-time prediction it is crucial to be able to output the results
faster than the mean arrival rate of cases. Thus, we also measured the average
runtime overhead of our approach. All experiments were conducted using R ver-
sion 3.2.2 on a laptop with a 2.4 GHz Intel Core i5 quad core processor and 8
Gb of RAM running the x86 64-pc-linux-gnu platform. The runtime overhead
generally depends on the length of the process cases and the number of possible
permutations of the checks. For the Bondora dataset, it took around 70 seconds
to construct the SVM classifiers (offline) for all the checks, using default train-
ing parameters. In contrast, for the Environmental dataset with much shorter
feature vectors it took less than a second to train the classifier (see Table 7).
At runtime, it takes less than 2 milliseconds on average to find the optimal per-
mutation of knockout activities for an ongoing case for both datasets (including
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preprocessing of the data and application of the classifier). This shows that our
approach performs within reasonable bounds for online applications.

Table 7: Execution times of various components of our approach in milliseconds.

Component Bondora Environmental
mean st dev mean st dev

Offline, overall Learn classifier 75,000 9,000 150 20

Online,
per case

Preprocess data 0.45 0.03 0.67 0.03
Apply classifier 1.37 0.15 0.12 0.02
Find optimal permutation 0.12 0 0.02 0

4.5 Threats to Validity

Threats to external validity are the limited number and type of logs we used for
the evaluation and the use of a single classifier. While we chose only two datasets
from two distinct domains (financial and government), these two datasets rep-
resent real-life logs well. They exhibit substantial differences in the number of
events, event classes and total number of traces, with one log being relatively
large (over 40,000 cases) and the other relatively small (around 1,200 cases).

Both the datasets used in this evaluation did not have the required start
and end event timestamps to estimate the processing times of the knockout
checks. Thus, we assigned a constant time to all checks. The inability to estimate
processing time does not invalidate our approach. In fact, our approach would
tend to further reduce the amount of overprocessing if processing times could be
correctly estimated.

We reported the results with a single classified (SVM). However, we tested
the approach with decision trees and random forests, and the reported results
are qualitatively the same for all tested classifiers, i.e. they all improved over the
baselines. We decided to only retain SVM in the paper because this classifier
yielded the highest classification accuracy among all classifiers we tested. How-
ever, our approach is independent of the classifier used. Thus, using a different
classifier does not in principle invalidate the results. That said, we acknowledge
that the goodness of the prediction, as in any classification problem, depends
on the particular classifier employed. Therefore, it is important to test multiple
classifiers for a given dataset, and to apply hyperparameter tuning, in order to
choose the most adequate classifier with the best configuration.

5 Conclusion and Future Work

We have presented an approach to reduce overprocessing by ordering knockout
checks at runtime based on their reject probabilities and processing times de-
termined via predictive models. Experimental results show that the proposed
runtime ordering approach outperforms a design-time ordering approach when
the reject probabilities of the knockout checks are close to each other. In the
dataset where one check had a considerably higher rejection rate than the other,
the design-time and the runtime ordering approach yielded similar results.
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The proposed approach is not without limitations. One limitation of scope
is that the approach is applicable when the checks are independent (i.e. can
be reordered) and every check is performed once within one execution of the
knockout section. In particular, the approach is not applicable when some of
the knockout checks can be repeated in case of a negative outcome. This is the
case for example in a university admission process, where an eligibility check
may initially lead to a rejection, but the applicant can ask the application to be
re-considered (and thus the check to be repeated) after providing clarifications
or additional information. In other words, the current approach is applicable
when a negative outcome (“reject”) is definite and cannot be revoked. Similarly,
we assume that a check leading to a positive outcome is definite and cannot be
reconsidered. Designing heuristics for cases where the outcomes of checks are
revocable is a direction for future work.

Another limitation is that the approach is designed to minimize overpro-
cessing only, without considering other performance dimensions such as cycle
time (i.e. mean duration of cases). If we add cycle time into the equation, it
becomes desirable to parallelize the checks rather than sequentializing them. In
other words, rather than performing the checks in a knockout section in strict
sequence, some or all of checks could be started in parallel, such that whenever
the first check fails, the other parallel checks are cancelled. On the one hand
this parallelization leads to higher overprocessing effort, since effort is spent in
partially completed checks that are later cancelled. On the other hand, it reduces
overall cycle time, particularly when some of the checks involve idle time dur-
ing their execution. For example, in a university admission process when some
documents are found to be missing or defective, the checks involving these doc-
uments need to be put on hold until the missing or correct documents arrive.
If the goal is to minimize both overprocessing and cycle time, this waiting time
can be effectively used to perform other checks.

The proposed approach relies on the accuracy of the reject probability esti-
mates provided by the classification model. It is known however that the likeli-
hood probabilities produced by classification methods (including random forests)
are not always reliable. Methods for estimating the reliability of such likelihood
probabilities have been proposed in the machine learning literature [21]. A possi-
ble enhancement of the proposed approach would be to integrate heuristics that
take into account such reliability estimates.

Another avenue for future work is to apply predictive methods to reduce
other types of waste, such as defect waste induced when a defective execution
of an activity subsequently leads to part of the process having to be repeated in
order to correct the defect (i.e. rework). The idea is that if a defective activity
execution can be detected earlier, the effects of this defect can be minimized
and corrected more efficiently. Predictive process monitoring can thus help us to
detect defects earlier and to trigger corrective actions as soon as possible.
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