
1

Filtering out Infrequent Behavior from
Business Process Event Logs
Raffaele Conforti, Marcello La Rosa and Arthur H.M. ter Hofstede

Abstract—In the era of “big data” one of the key challenges is to analyze large amounts of data collected in meaningful and scalable
ways. The field of process mining is concerned with the analysis of data that is of a particular nature, namely data that results from the
execution of business processes. The analysis of such data can be negatively influenced by the presence of outliers, which reflect
infrequent behavior or “noise”. In process discovery, where the objective is to automatically extract a process model from the data, this
may result in rarely travelled pathways that clutter the process model. This paper presents an automated technique to the removal of
infrequent behavior from event logs. The proposed technique is evaluated in detail and it is shown that its application in conjunction
with certain existing process discovery algorithms significantly improves the quality of the discovered process models and that it scales
well to large datasets.

Index Terms—Business Process Management, Process Mining, Infrequent Behavior.

F

1 INTRODUCTION

P ROCESS mining aims to extract actionable process knowledge
from event logs of IT systems that are commonly available

in contemporary organizations [31]. One area of interest in the
broader field of process mining is that of process discovery which
is concerned with the derivation of process models from event
logs. Over time, a range of algorithms have been proposed that
address this problem. These algorithms strike different trade-offs
between the degree to which they accurately capture the behavior
recorded in a log, and the complexity of the derived process
model [31].

Algorithms for process discovery operate on the assumption
that an event log faithfully represents the behavior of a business
process as it was performed in an organization during a particular
period. Unfortunately, real-life process event logs, as other kinds
of events logs, often contain outliers. These outliers represent
infrequent behavior, often referred to as “noise” [29], [30], and
their presence may be exacerbated by data quality issues (e.g.
data entry errors or missing data). The presence of noise leads to
the derived model exhibiting execution paths that are infrequent,
which clutter the model, or to models that are simply not a
true representation of actual behavior. In order to limit these
negative effects, process event logs are typically subjected to a
pre-processing phase where they are manually cleaned from noise
[31]. This however is a challenging and time consuming task, with
no guarantee on the effectiveness of the result, especially in the
context of large logs exhibiting complex process behavior [28].

The inability to effectively detect and filter out infrequent
behavior has a negative effect on the quality of the discovered
model, in particular on its precision, which is a measure of the
degree to which the model allows behavior that has not been
observed in the log, and its complexity. In fact, tests reported in

• R. Conforti, M. La Rosa and A.H.M. ter Hofstede are with the Queensland
University of Technology, Australia
Email: {raffaele.conforti, m.larosa, a.terhofstede}@qut.edu.au

• A.H.M. ter Hofstede is with the Eindhoven University of Technology, The
Netherlands.

this paper show that low levels of infrequent behavior already
have a detrimental effect on the quality of the models produced
by various discovery algorithms such as Heuristics Miner [38],
Fodina [36], and Inductive Miner [23], despite these algorithms
claiming to have noise-tolerant capabilities. For example, the
Heuristics Miner, which employs a technique for disambiguating
event dependencies, can have a 49% drop in precision when the
amount of infrequent behavior corresponds to just 2% of the total
log size.

This paper deals with the challenge of discovering process
models of high quality in the presence of noise in event logs, by
contributing an automated technique for systematically filtering
out infrequent behavior from such logs. Our filtering technique
first builds an abstraction of the process behavior recorded in
the log as an automaton (a directed graph). This automaton
captures the direct follows dependencies between event labels in
the log. From this automaton, infrequent transitions are subse-
quently removed. Then the original log is replayed on this reduced
automaton in order to identify events that no longer fit. These
events are removed from the log. The technique aims at removing
the maximum number of infrequent transitions in the automaton,
while minimizing the number of events that are removed from the
log. This results in a filtered log that fits the automaton perfectly.

The literature in the area of infrequent event log filtering
is very scarce, offering simplistic techniques or approaches that
require the availability of a reference process model as input to the
filtering. To the best of our knowledge, this paper proposes the first
effective technique for filtering out noise from process event logs.
The novelty of the technique rests upon the choice of modeling the
infrequent log filtering problem as an automaton. This approach
enables the detection of infrequent process behavior at a fine-
grain level, which leads to the removal of individual events rather
than entire traces (i.e. sequences of events) from the log, hence
reducing the impact on the overall process behavior captured in
the log.

The technique has been implemented on top of the ProM
Framework and extensively evaluated in combination with differ-
ent baseline discovery algorithms, using a three-pronged approach.

2

First, we measured the accuracy of our technique in identifying
infrequent behavior at varying levels of noise, that we injected
in artificial logs. Second, we evaluated the improvement of dis-
covery accuracy and reduction of process model complexity in
the presence of varying levels of noise, for a number of baseline
process discovery algorithms and compared the results with those
obtained by two baseline automated filtering techniques. Third,
we repeated this latter experiment using a variety of real-life logs
exhibiting different characteristics such as overall size and number
of (distinct) events. Discovery accuracy was measured in terms
of the well-established measures of fitness and precision, while
different structural complexity measures such as size, density and
control-flow complexity, were used as proxies for model complex-
ity. The results show that the use of the proposed technique leads
to a statistically significant improvement of fitness, precision and
complexity, while the generalization of the discovered model is
not negatively affected.

As an example, Figure 1 shows two process models in the
Business Process Model and Notation (BPMN) language [26],
discovered from the log of a Dutch Financial Institution (BPI
Challenge 2012).1 The top model is discovered with the Inductive
Miner, the bottom one is obtained by first pre-processing the log
with our filtering technique, and then using the Inductive Miner. In
both models, the process follows a similar execution flow: a loan
application is first submitted, after which it is assessed, resulting
in an acceptance or rejection. If the application is accepted, an
offer is made to the customer. Despite the underpinning business
process is the same, in the top model several tasks can be skipped
(e.g. “Application Declined” and “Offer Created”). This results in
the second model being simpler (Size = 52 nodes vs. 65) and yet
more accurate (F-score = 0.671 vs. 0.551).

Finally, time performance measurements show that our tech-
nique scales well to large and complex logs, generally being able
to filter a log in a few seconds.

The paper is structured as follows. Section 2 discusses algo-
rithms for automated process discovery with a focus on their noise
tolerance capabilities. Section 3 defines the proposed technique
while Section 4 examines the inherent complexity of determining
the minimum log automaton and proposes an Integer Linear
Programming formulation to solve this problem. Section 5 is
devoted to finding an appropriate threshold for determining what
is to be considered infrequent behavior. Section 6 evaluates the
proposed noise filtering technique, while Section 7 concludes the
paper and discusses future work.

2 BACKGROUND AND RELATED WORK

In this section we summarize the literature in the area of auto-
mated process model discovery, with a focus on noise-tolerance,
and discuss the available metrics to measure the quality of the
discovered model.

2.1 Process Log Filtering

Preprocessing a log before starting any type of process mining
exercise is a de-facto practice. Typically, preprocessing includes a
log filtering phase. The ProM Framework3 offers several plugins

1. doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
2. Different tasks between the two models are due to the events filtering of

InductiveMiner.
3. http://www.processmining.org/

for log filtering. In particular, two plugins deal with the removal of
infrequent behavior. The Filter Log using Simple Heuristics (SLF)
plugin removes traces which do not start and/or end with a specific
event, as well as events that refer to a specific process task, on the
basis of their frequency, e.g. removing all traces that start with an
infrequent event.

The Filter Log using Prefix-Closed Language (PCL) plugin
removes events from traces to obtain a log that can be expressed
via a Prefix-Closed Language.4 Specifically, this plugin keeps a
trace only if it is the prefix of another trace in the log, on the basis
of a user-defined frequency threshold.

Other log filtering plugins are available in ProM, which
however do not specifically deal with the removal of infrequent
behavior. For example, the Filter Log by Attribute plugin removes
all events that do not have a certain attribute, or where the attribute
value does not match a given value set by the user, while the
Filter on Timeframe plugin extracts a sublog including only the
events related to a given timeframe (e.g. the first six months of
recordings).

In the literature, noise filtering of process event logs is only
addressed by Wang et al. [37]. The authors propose an approach
which uses a reference process model to repair a log whose events
are affected by inconsistent labels, i.e. labels that do not match the
expected behavior of the reference model. However, this approach
requires the availability of a reference model.

2.2 Noise-tolerant Discovery Algorithms
The α algorithm [33] was the first automated process model
discovery algorithm to be proposed. This algorithm is based on
the direct follows dependency defined as a > b, where a and
b are two process tasks and there exists an event of a directly
preceding an event of b. This dependency is used to discover if one
of the following relations exists between two tasks: i) causality,
represented as →, which is discovered if a > b and b ≯ a, ii)
concurrency, represented as ‖, which is discovered if a > b and
b > a, and iii) conflict, represented as #, which is discovered if
a≯ b and b≯ a. The α algorithm assumes that a log is complete
and free from noise, and may produce unsound models if this is
not the case.

In order to overcome the limitations of the α algorithm,
including its inability to deal with noise, several noise-tolerant
discovery algorithms were proposed. The first attempt was the
Heuristics Miner [38]. This algorithm discovers a model using the
α relationships. In order to limit the effects of noise, the Heuristics
Miner introduces a frequency-based metric⇒: given two labels a
and b, a⇒ b =

(
|a>b|−|b>a|
|a>b|+|b>a|+1

)
. This metric is used to verify if

a ‖ relationship was correctly identified. In case the value of ⇒
is above a given threshold, the ‖ relationship between the two
tasks is replaced by the→ relationship. A similar approach is also
used by Fodina [36], a technique which is based on the Heuristics
Miner.

The Inductive Miner [23] is a discovery algorithm based on
a divide-and-conquer approach which always results in sound
process models. This algorithm, using the direct follows depen-
dency, generates the directly-follows graph. Next, it identifies a
cut corresponding to a particular control-flow dependency – choice
(×), sequence (→), parallelism (∧), or iteration () – in the graph

4. A language is prefix-closed if the language is equal to the prefix closure
of the language itself. For example, given a language L = {abc}, the prefix
closure of L is defined as Pref (L) = {ε,a,ab,abc}

3
Inductive-Original-2012

Application
Submitted

Application
Partly

Submitted

Application
Preaccepted

W_Valideren
aanvraag

W_Nabellen
incomplete

dossiers
W_Afhande-

len leads

Application
Declined

Application
Accepted

Offer
Selected

Application
Finalized

Offer
Created

Offer
Sent

W_Com-
pleteren
aanvraag

W_Nabellen
offertes

Inductive-Filtered-2012

Application
Submitted

Application
Partly

Submitted

Application
Declined

Application
Preaccepted

Offer
Selected

W_Com-
pleteren
aanvraag

Offer
Created

Offer
Sent

W_Nabellen
offertes

W_Valideren
aanvraag

W_Nabellen
incomplete

dossiers

Start End

Task

XOR AND

Legend

Fig. 1: BPMN model obtained using InductiveMiner on the log of a personal loan or overdraft process from a financial institution
before (above) and after (below) applying the proposed technique.2

along which the log is split. This operation is repeated recursively
until no more cuts can be identified. The mining is then performed
on the portions of the log discovered using the cuts. In order to
deal with noise, the algorithm applies two types of filters. The
first filter behaves similarly to the Heuristics Miner and removes
edges from the directly-follows graph. The second filter uses the
eventually-follows graph to remove additional edges which the
first filter did not remove.

These approaches for handling noise exhibit two limitations.
First, dependencies are removed only if they are “ambiguous”, e.g.
replacing a ‖ dependency with a→ dependency, does not remove
dependencies which are simply infrequent. Second, dependencies
removed as part of the filtering stage are only removed from the
dependency graph and not from the log. This influences the final
result of the discovery since the algorithm may not be able to
discover additional/different relationships between tasks.

The Fuzzy Miner [11], another discovery algorithm, applies
noise filtering a posteriori, directly on the model discovered. This
algorithm is based on the concepts of correlation and significance,
and produces a fuzzy net where each node and edge is associated
with a value of correlation and significance. After the mining
phase, one can provide a significance threshold and a correlation
threshold which are used for filtering. These two thresholds can
simplify the model by preserving highly significant behavior,
aggregating less significant but highly correlated behavior (via
clustering of nodes and edges), and abstracting less significant
and less correlated behavior (via removal of nodes and edges). The
main problem of this algorithm is that a fuzzy net only provides
an abstract representation of the process behavior extracted from
the log, due to its intentionally underspecified semantics, which
leaves room for interpretation.

Finally, the ILP miner [35] follows a different approach in
order to handle noise. In this case noise is not filtered out but
is integrated in the discovered model. This algorithm translates
relations observed in the logs into an Integer Linear Programming
(ILP) problem, where the solution is a Petri net capable of
reproducing all behavior present in the log (noise included). The
negative effect of this approach is that it tends to generate “flower-
like”5 models which suffer from very low precision.

5. This terms derives from the resemblance of the model with a flower,
where a place in the center is surrounded by several transitions which with
their arcs resemble the shapes of petals.

2.3 Outlier Detection in Data Mining

A number of outlier detection algorithms have been proposed in
the data mining field. These algorithms build a data model (e.g.
a statistical, linear, or probabilistic model) describing the normal
behavior, and consider as outliers all data points which deviate
from this model [4].

In the context of temporal data, these algorithms have been ex-
tensively surveyed by Gupta et al. [13] (for events with continuous
values, a.k.a. time series) and by Chandola et al. [7] (for events
with discrete values, a.k.a. discrete sequences).

According to [13], we can classify those approaches into three
major groups. The first group encompasses approaches dealing
with the problem of detecting if an entire sequence of events
is an outlier. These approaches either build a model from the
entire dataset, i.e. from all sequences (e.g. [6], [10], [27], [40]), or
subdivide the dataset into overlapping windows and build a model
for each window (e.g. [16], [21], [22]). While approaches of this
type can in principle be used for filtering out infrequent process
behavior in event logs, their filtering would be too coarse-grained,
as it would lead to the removal of entire traces in the log, impacting
as a result, on the accuracy of the discovered process model.

Approaches in the second group identify as outliers single data
points (e.g. [5], [9], [25]) or sequences thereof (e.g. [18], [39])
on the basis of a data model of the normal behavior in the log,
e.g. a statistical model. These approaches are not suitable since
they work at the level of a single time series. To apply them to
our problem, we would need to treat the entire log as a unique
time series, which however would lead to mixing up events from
different traces based on their absolute order of occurrence in the
log. Another option is to treat every trace as a separate time series.
However, given that process events are not repeated often within
a trace, their relative frequency would be very low, leading to
considering almost all events of a trace as outliers.

Finally, approaches in the third group identify anomalous
patterns within sequences (e.g. [15], [19]). These approaches
assign an anomaly score to a pattern, based on the difference
between the frequency of the pattern in the training dataset and
the frequency of the pattern in the sequence under analysis. These
approaches are not suitable in our case, due to the absence of a
noise-free training dataset which can be used as input.

Outlier detection algorithms based on graphs, e.g. [14] and
[12], share some similarities with our approach. Given a graph as

4

input (e.g. a co-authorship graph), which could be built from the
log, they identify outlier subgraphs within that graph. These ap-
proaches consider undirected graphs where the order dependency
between elements is irrelevant. For example, if the subgraph made
of events “A” and “B” is considered as an outlier, these two events
will be removed from each trace of the log in which they occur,
regardless of their relative order or frequency. While this filtering
mechanism may work with process event logs, the removal of
infrequent behavior would again be too coarse-grained.

2.4 Model Dimensions
The quality of a discovered model can be measured according
to four dimensions: fitness (recall), precision (appropriateness),
generalization, and complexity.

Fitness measures how well a model can reproduce the process
behavior contained in a log. A fitness measurement of 0 indicates
the inability to reproduce any of the behavior recorded in the
log while a value of 1 indicates the ability to reproduce all
recorded behavior. In order to measure fitness we use the approach
proposed by Adriansyah et al. [3] which, after aligning a log to a
model, measures the number of times the two are not moving
synchronously. This approach is widely accepted as the main
fitness measurement [8], [23].

Precision measures the degree to which the behavior made
possible by a model is found in a log. A value of 0 indicates that
the model can produce a lot of behavior not observed in the log
while a value of 1 indicates that the model only allows behavior
observed in the log. In order to obtain a measurement of precision
that is consistent with that of fitness, we decided to adopt the
approach proposed by Adriansyah et al. [2]. Accordingly, after
generating an alignment automaton describing the set of executed
actions and the set of possible actions, this approach measures
precision based on the ratio between the number of executed
actions over the number of possible actions.

The F-score is often used to combine fitness and precision in
a single measure of model accuracy, and is the harmonic mean of
fitness and precision

(
2 · Fitness·Precision

Fitness+Precision

)
.

Generalization can be seen as the opposite of precision. It pro-
vides a measure of the capability of a model to produce behavior
not observed in the log. We decided to measure generalization
using 10-fold cross validation, which is an established approach
in data mining [20]. Accordingly, a log is divided into ten parts
and each part is used to measure the fitness of the model generated
using the remaining nine parts. Another approach for measuring
generalization is the approach proposed by van der Aalst et al. [32]
which we decided not to use since in our tests this approach returns
similar results across all discovered models.

Finally, complexity quantifies the structural complexity of a
process model and can be measured using various complexity
metrics [24] such as:
• Size: the number of nodes.
• Control-Flow Complexity (CFC): the amount of branching

caused by gateways in the model.
• Average Connector Degree (ACD): the average number of

nodes a connector is connected to.
• Coefficient of Network Connectivity (CNC): the ratio between

arcs and nodes.
• Density: the ratio between the actual number of arcs and the

maximum possible number of arcs in a model.
Noise affects the above quality dimensions in different ways.
Recall is not reliable when computed on a log containing noise as

Symbol Meaning
Γ Finite set of Tasks
E Finite set of Events
C Finite set of Trace Identifiers
C Surjective function linking E to C
T Surjective function linking E to Γ

< Strict total ordering over Events
@ Strictly Before Relation
 Direct Follow Dependency
A Log Automaton
#Γ Function counting occurencies of Γ (States)
Function counting occurencies of (Arcs)
 m Set of Frequent arcs
 o Set of Infrequent arcs
ε Frequency Threshold

ΓR Set of required States
↑A Set of initial States
↓A Set of final States
Φ Possible Arc Sets
⇀ Minimal Arc Set
A f Anomaly-Free Automaton
↪→ Replay of two Events

replayable Replayable sequence of Events
Θc Subtrace
F Filtered Log

TABLE 1: Formal notation.

behavior made possible by the discovered model is not necessarily
behavior that reflects reality. The presence of noise tends to lower
precision as this noise introduces spurious connections between
event labels. Given the dual nature of precision and generalization
it is clear that the presence of noise increases generalization, as the
new connections lead to a model allowing more behavior. Finally,
the complexity of discovered process models for logs with noise
tends to be higher due to the increased number of tasks and arcs
resulting from the presence of new connections introduced by the
noise.

3 APPROACH

In this section we present our technique for the filtering of
infrequent behavior. After introducing preliminary concepts such
as event log and direct follow dependencies, the concept of log
automaton is presented. The identification of infrequent behavior
in a log automaton and its removal conclude the section.

The formal notation used in this section is summarized in
Table 1.

3.1 Preliminaries

For auditing and analysis purposes, the execution of business
processes supported by IT systems is generally recorded in system
or application logs. These logs can then be converted into event
logs for process mining analysis. An event log is composed of
a set of traces. Each trace (a.k.a. case) captures the footprint
of a process instance in the log, in the form of a sequence of
events, and is identified by a unique case identifier. Each event
records the execution of a specific process task within a trace.
For instance, with reference to the log of the personal loan and
overdraft process of Figure 1, there will be events recording the
execution of task “Application Submitted” and “Application Partly
Submitted”. These are the first two events of each trace in this log,
since the corresponding tasks are the first two tasks to be always
executed as part of this business process, as shown in the two

5

models of Figure 1. For this process, the case identifier is the loan
or overdraft application number, which is unique for each trace.

Definition 1 (Event Log). Let Γ be a finite set of tasks. A log L
is defined as L = (E ,C ,C,T,<) where E is the set of events, C
is the set of case identifiers, C : E → C is a surjective function
linking events to cases, T : E → Γ is a surjective function linking
events to tasks, and <⊆ E ×E is a strict total ordering over the
events.

The strictly before relation @ is a derived relation over events,
where e1 @ e2 holds iff e1 < e2∧C(e1) =C(e2)∧@e3 ∈ E [C(e3) =
C(e1)∧ e1 < e3∧ e3 < e2].

Given a log, several relations between tasks can be defined
based on their underlying events. We are interested in the direct
follow dependency, which captures whether a task can directly
follow another task in the log.

Definition 2 (Direct Follow Dependency). Given tasks x,y ∈ Γ, x
directly follows y, i.e. x y, iff ∃e1,e2 ∈ E ∧T(e1) = x∧T(e2) =
y∧ e1 @ e2.

3.2 Infrequent behavior detection
In this section we present a technique for infrequent behavior
detection which relies on the identification of anomalies in a
so-called log automaton. In this context, anomalies represent
relations, which occur infrequently.

An automaton is a directed graph where each node (here
referred to as a state) represents a task which can occur in
the log under consideration and each arc connecting two states
indicates the existence of a direct follow dependency between the
corresponding tasks.

Definition 3 (Log Automaton). A log automaton for an event log
L is defined as a directed graph A = (Γ,).

For an automaton we can retrieve all initial states through ↑A =
{x ∈ Γ | @y ∈ Γ[y x]} and all final states through ↓A = {x ∈ Γ |
@y ∈ Γ[x y]}.

As we are interested in frequencies of task occurrences
and of direct follow dependencies, we introduce the func-
tion #Γ : Γ → N defined by #Γ(x) = |{z ∈ E | T(z) = x}|
and the function # : → N defined by # (x,y) =
|{(e1,e2) ∈ E ×E | T(e1) = x∧T(e2) = y∧ e1 @ e2}|.

Figure 2 shows how to generate a log automaton from a log.
Each event in the log is converted into a state, with A as initial
state and D as final state. Moreover, two states are connected with
an arc if in the log the two events follow each other. Finally, an
annotation showing the frequency is added to each state and arc.

Log
< A,B,B,D >

< A,B,C,D >

< A,B,B,B,D >

< A,B,C,B,D >

⇒
A4 B8

C2

Log Automaton

D44

3

2
3

1 1

Fig. 2: Example: Log Automaton.

An arc is considered infrequent iff its relative frequency is a
value smaller than a given threshold ε where the relative frequency

of an arc is computed by dividing the frequency of the arc by the
sum of the frequencies of the source and target states.

Definition 4 (Infrequent and Frequent Arcs). The set of infrequent
arcs o is defined as {(x,y) ∈ Γ× Γ | (2 · # (x,y)/(#Γ(x) +
#Γ(y)) < ε)∧ x y}. The complement of this set is the set of
frequent arcs defined by m, \ o.

Considering the example in Figure 2 and using a threshold
of 0.3, the set of infrequent arcs contains the arcs (C,B), with a
relative frequency of 2·1

2+8 = 0.2 < 0.3, and (C,D), with a relative
frequency of 2·1

2+4 = 0.25 < 0.3.
The indiscriminate removal of anomalies from a log automaton

may result in a log automaton where certain states can no longer
be reached from an initial state or from which final states can no
longer be reached. This loss of connectivity may in some instances
be considered acceptable but not in others as there may be states
that should be retained from a stakeholder’s perspective.

Definition 5 (Required States). Given a log automaton A , the
states that need to be preserved during reduction (i.e. the process
of removing infrequent transitions) are referred to as the required
states and the corresponding set of these states is denoted as
ΓR and thus ΓR ⊆ Γ. These states need to be identified by a
stakeholder, but must include all initial and all final states, i.e.
↑A⊂ ΓR and ↓A⊂ ΓR.

From now on, we consider a log automaton as A =(Γ,ΓR, m

, o).
In order to obtain an anomaly-free automaton A f where the

connectivity of required states is not lost, we first consider the
set Φ which consists of possible arc sets and which is defined
by Φ , {⇁∈P() | m⊂⇁ ∧∀s ∈ ΓR ∃a ∈↑(Γ,⇁) [a ⇁+ s]∧
∀s ∈ ΓR ∃a ∈↓(Γ,⇁) [s ⇁+ a]}.6 We are interested in a (there are
potentially multiple candidates) minimal set ⇀ in Φ, i.e. a set from
which no more infrequent arcs can be removed. Hence, ⇀∈Φ and
for all E ∈ Φ : |E| ≥ |⇀|. The set ⇀ is then used to generate our
anomaly-free automaton A f , (Γ,ΓR, m, o ∩⇀).

In the example provided in Figure 2, assuming that all states
are required and using a threshold ε of 0.3, the set Φ contains two
sets of arcs. The first set contains the arcs (A,B), (B,C), (B,D)
and (C,B), while the second set contains the arcs connecting
(A,B), (B,C), (B,D) and (C,D). In this case since the size of
the two sets is the same we can choose one of the two sets
indiscriminately. Figure 3 shows the anomaly-free automaton
resulting from selecting the first of the two possible sets of arcs.

A4 B8

C2

D4 ⇒ A4 B8

C2

Anomaly-Free AutomatonLog Automaton

D44

3

2
3

1 1

4

3

2

3

1

Fig. 3: Example: Anomaly-Free Automaton.

6. ⇁+ is the transitive closure of ⇁.

6

3.3 Infrequent behavior removal

In this section focus is on the removal of infrequent behavior
from a log using an automaton from which anomalies have been
removed as described in the previous section.

The idea behind our technique is inspired by the observation
that infrequent behavior in an event log is often caused by events
that are recorded in the wrong order or at an incorrect point
in time. Such infrequent behavior may cause the derivation of
direct follow dependencies that in fact do not hold or may cause
direct follow dependencies that hold to be overlooked. Hence, our
starting point for the removal of infrequent behavior is to focus
on incorrectly recorded events. To this end, events that cannot be
replayed on the anomaly-free automaton are removed.

Definition 6 (Replayable). Given a set of events E ⊆ E and
an anomaly-free automaton A f , this automaton can replay a
sequence of two events e,e′ ∈ E, i.e. e ↪→E e′, iff ∃x,y ∈ Γ[x =
T(e)∧y= T(e′)∧x y]. The automaton can replay a set of events
E, i.e. replayable(E), iff there is a sequence e1,e2, . . . ,en with
E = {e1,e2, . . . ,en}, and e1 ↪→E e2, e2 ↪→E e3, . . . , en−1 ↪→E en,
and e1 is an event corresponding to an initial state, T(e1) ∈↑A f ,
and en is an event corresponding to a final state, T(en) ∈↓A f .

Having defined what it means to be able to replay a trace, we
can identify the subtraces of a trace that can be replayed.

Definition 7 (Subtrace). Given a trace corresponding to case
c, the set of its subtraces Θc is defined as Θc , {E ∈P(E c) |
replayable(E)}, where E c is the set of events in case c, i.e.
{e ∈ E | C(e) = c}.

Among the set of replayable subtraces we are interested in the
ones that are the longest.

Definition 8 (Longest Replayable Subtrace). Given a trace corre-
sponding to case c, a set of its longest replayable subtraces θ c is
defined as θ c ∈Θc such that for all η ∈Θc it holds that |θ c| ≥ |η |.

Given an anomaly-free automaton A f , the filtered log F is
defined as the set of the longest subtraces of L which can be
replayed by A f .

Definition 9 (Filtered Log). The filtered version of log L is
defined as F = (E,ran(C�E),C�E ,T�E ,< ∩ E × E) where E is
defined as

⋃
c∈C θ c.

Figure 4 shows how to use an anomaly-free automaton to
generate a filtered log. Starting from a log containing infrequent
behavior, the log automaton is generated, where A is the initial
state and D the final state. Using a threshold ε of 0.3, the anomaly-
free automaton is derived, and then used to filter the log. In the
filtered log, event C is removed from the second trace since the
anomaly-free automaton could not reproduce this event while
reaching the final state, which was thus treated as infrequent
behavior.

4 THE MINIMUM ANOMALY-FREE AUTOMATON
PROBLEM

In this section first we prove the inherent complexity of determin-
ing a minimum anomaly-free automaton and then we provide an
ILP formulation of the problem.

4.1 Complexity
The identification of the minimum anomaly-free automaton is
an NP-hard problem. In this section we provide a proof of its
complexity presenting a polynomial time transformation from the
set covering problem (a well known NP-complete problem [17])
to the minimum anomaly-free automaton problem.

The set covering problem is the problem of identifying the
minimum number of sets required to contain all elements of a
given universe. Formally, given a universe U and a set S⊆P(U)
composed of subsets of U , an instance (U,S) of the set covering
problem consists of identifying the smallest subset of S, C ⊆ S,
such that its union equals U , i.e.

⋃
C =U .

Formally, let I = (U,S) be an instance of a set cover problem,
its related anomaly-free automaton problem is defined as Π(I) =
(ΓI ,Γ

R
I ,

m
I ,

o
I) where:

• ΓI , ΓS∪ΓU ∪{i,o} with
– ΓS , {s j | j ∈ S};
– ΓU , {uk | k ∈U};

• ΓR
I , ΓU ∪{i,o};

• m
I , {(s j,uk) | j ∈ S∧ k ∈ j}∪ΓU ×{o};

• o
I, {i}×ΓS.

This construction is only applicable when the set covering
problem has a solution. Checking if a set covering problem has
a polynomial time complexity and can be checked by verifying if
the union of all sets in S is equal to U , i.e.

⋃
S =U .

Proposition 1. If a set covering problem I = (U,S) has a solution
(this can be checked in polynomial time) then Π(I) is an anomaly-
free automaton.

Lemma 1. Let I = (U,S) be an instance of the set covering
problem that has a solution and let Π(I), (ΓI ,Γ

R
I ,

m
I ,

o
I) be its

transformation. If A ′
I = (ΓI ,Γ

R
I ,

m
I ,

o′
I) is a minimum anomaly-

free automaton for Π(I) then C , {c ∈ S | i o′
I sc} is a minimum

set cover for I.

Proof. C is a minimum set cover for I iff C is a cover, and C is
minimal.

1) C is a cover. Let k ∈U . Consider uk in A ′
I , uk is on a path

from i to o. Hence, there is a node s j such that i o′
I s j and

s j m
I uk. Hence, j ∈ C and k ∈ j. Therefore k ∈

⋃
C and

hence U ⊆
⋃

C and thus C is a cover.
2) C is minimal. Let us assume C is not minimal. Then there

exists a cover C′ ⊆ S such that |C′| < |C|. Define A ′′
I =

(ΓI ,Γ
R
I ,

m
I ,

o′′
I) with o′′

I = {(i,sc) | c ∈C′}. Observe that
| o′′

I |< | o′
I |. Let k ∈U . As C′ is a cover, there exists a j in

C′ such that k ∈ j. Therefore, s j m
I uk. As i o′′

I s j (given
that j ∈ C′) and uk m

I o (by construction) uk is on a path
from i to o in A ′′

I . Hence, i, o, and all states uk, k ∈U , are
on a path from i to o. Therefore in A ′′

I all required states are
on a path from i to o and A ′′

I contains fewer infrequent arcs
than A ′

I . Hence A ′
I is not minimal. Contradiction.

Corollary 1.1. The minimum anomaly-free automaton problem is
NP-hard.

This follows from the fact that transforming a set covering
problem to a minimum anomaly-free automaton problem is a
polynomial time transformation, and the fact that through this
transformation we can solve a set covering problem through a
search for a minimum anomaly-free automaton (see Lemma 1).

7

Log
< A,B,B,D >

< A,B,C,D >

< A,B,B,B,D >

< A,B,C,B,D >

⇒
A4 B8

C2

D44

3

2
3

1 1
⇒

A4 B8

C2

D4

Anomaly-Free AutomatonLog Automaton

⇒ < A,B,D >

< A,B,B,D >

Filtered Log

< A,B,B,B,D >

< A,B,C,B,D >

4

3

2

3

1

Fig. 4: Example: Anomaly-Free Automaton.

a

b

cd

e
s1s2

s3

s4
⇒ i

ss2

ss1

ss3

ss4

uc

ub

ua

ud

ue

o

Fig. 5: Sample Reduction from Set Covering Problem to Minimum
Anomaly-Free Automaton Problem.

Lemma 2. Let I = (U,S) be an instance of the set covering
problem and let Π(I), (ΓI ,Γ

R
I ,

m
I ,

o
I) be its transformation. If

C ∈ S is a minimum set cover for I then A ′
I = (ΓI ,Γ

R
I ,

m
I ,

o′
I),

where o′
I = {(i,sc) | c ∈C}, is a minimum anomaly-free automa-

ton for Π(I).

Proof. A ′
I is a minimum anomaly-free automaton for Π(I) iff in

A ′
I all required states are on a path from source (i) to sink (o), and

A ′
I is minimal.

1) All required states are on a path from i to o in A ′
I . Let k ∈U .

As C is a cover, there exists a j in C such that k∈ j. Therefore,
s j m

I uk. As i o′
I s j (given that j ∈ C) and uk m

I o (by
construction) uk is on a path from i to o in A ′

I . Hence, i, o,
and all states uk, k ∈U , are on a path from i to o. Therefore
in A ′

I all required states are on a path from i to o.
2) A ′

I is minimal. Let us assume A ′
I is not minimal and there ex-

ists a minimum anomaly-free automaton A ′′
I = (ΓI ,Γ

R
I ,

m
I

, o′′
I) such that | o′′

I | < | o′
I |. Define C′ = {c ∈ S | i o′′

I
sc}. Observe |C′| < |C|. Since in A ′′

I all required states are
on a path from i to o, C′ is a cover (see Lemma 1). Hence C
is not a minimum set cover. Contradiction.

Figure 5 shows how to reduce a set covering problem to a
minimum anomaly-free automaton problem. In the example, the
universe U contains five elements, U = {a,b,c,d,e}. Among these
elements four subsets are defined s1 = {a,b,c}, s2 = {a,d}, s3 =
{c,d}, and s4 = {d,e}. As part of the reduction an initial state i
and a final state o are introduced, and each element is converted
into a state. Additionally, states in the form uk are connected to
the final state. Moreover, for each subset a state is introduced
connecting it to the states representing elements of the subset,
for example Ss1 is connected to ua,ub, and uc. Finally, the initial
state is connected to each state representing a subset through an
infrequent arc (red arrow).

4.2 ILP Formulation
Through the application of Integer Linear Programming (ILP) one
can effectively determine a minimum log automaton of a given
log. In the following we show how to formulate this problem as
an ILP problem. Before presenting the formulation the following
set of variables needs to be introduced:
• for each arc n1 n2 there exists a variable en1,n2 ∈ {0,1}. If

the solution of the ILP problem is such that en1,n2 = 1, the
minimum automaton contains an arc connecting n1 to n2.

• for each state n∈Γ there exists a variable
←
C n ∈ {0,1}. If state

n is reachable from an initial state, the ILP solution assigns
to
←
C n a value of 1; otherwise

←
C n = 0.

• for each state n ∈ Γ there exists a variable
→
C n ∈ {0,1}. If

state n can reach a final state, the ILP solution assigns to
→
C n

a value of 1; otherwise
→
C n = 0.

• for each arc n1 n2 there exists a variable
←
L n2,n1 ∈ {0,1}.

If state n2 is reachable from an initial state through an arc
connecting n1 to n2, the ILP solution assigns to

←
L n2,n1 a

value of 1; otherwise
←
L n2,n1 = 0.

• for each arc n1 n2 there exists a variable
→
L n1,n2 ∈ {0,1}.

If state n1 can reach a final state through an arc connecting
n1 to n2, the ILP solution assigns to

→
L n1,n2 a value of 1;

otherwise
→
L n1,n2 = 0.

The ILP problem aims at minimizing the number of arcs of an
automaton:

min ∑
n1∈N

∑
n2∈N

n1 n2

en1,n2 . (1)

This ILP problem is subject to the following constraints:
• For each frequent arc we impose that a solution must contain

it:
en1,n2 = 1. (2)

• For each initial state s ∈↑A , we mark it as reachable from an
initial state: ←

C s = 1. (3)

• For each final state t ∈↓A , we mark it as able to reach a final
state: →

C t = 1. (4)

• For each state n ∈ ΓR, we require it to be reachable from an
initial state: ←

C n = 1. (5)

• For each state n ∈ ΓR, we require it to be able to reach a final
state: →

C n = 1. (6)

8

• For each couple of states n1,n2 ∈ Γ, if n1 is reachable from
an initial state and n1 is connected to n2, n1 n2, then n2 is
reachable from an initial state through n1:

←
L n2,n1 = 1⇔

←
C n1 + en1,n2 = 2. (7)

• For each couple of states n1,n2 ∈ Γ, if n2 can reach a final
state and n1 is connected to n2, n1 n2, then n1 is able to
reach a final state through n2:

→
L n1,n2 = 1⇔

→
C n2 + en1,n2 = 2. (8)

• Each non-initial state n1 ∈ Γ\ ↑A is reachable from an initial
state if and only if there is at least one path from an initial
state to that state that uses an arc originating from a state
reachable from an initial state:

←
C n1 = 1⇔ ∑

n2∈N
n1 6=n2

←
L n1,n2 ≥ 1. (9)

• Each non-final state n1 ∈ Γ\ ↓A can reach a final state if and
only if at least one of the target states of its outgoing arcs can
reach a final state:

→
C n1 = 1⇔ ∑

n2∈N
n1 6=n2

→
L n1,n2 ≥ 1. (10)

In the following lemmas we show how the constraints in Equiv-
alences 7-10 can be translated into an equivalent set of linear
constraints.

Lemma 3. Constraints of the form as in Equivalence 7 can be
rewritten into a set of equivalent inequalities of the form shown
below:

2 ·
←
L n2,n1 −

←
C n1− en1,n2 ≤ 0,

←
C n1 + en1,n2 −2 ·

←
L n2,n1 ≤ 1.

(11)

Proof. Let us introduce the following equalities for readability
purposes:

←
L n2,n1 = x,

←
C n1 + en1,n2 = y.

Now we can rewrite Inequalities 11 as:

2 · x− y≤ 0,
y−2 · x≤ 1.

Considering that x can only be 0 or 1, and y can only be 0, 1,
or 2, the first constraint can only be satisfied if either x = 0 or
if y = 2. Similarly, the second constraint can only be satisfied if
either y < 2 or if x = 1. We can see that in order to satisfy both
constraints either x = 0 and y 6= 2 or x = 1 and y = 2 which is
exactly the constraint defined in Equivalence 7.

Lemma 4. Constraints of the form as in Equivalence 9 can be
rewritten into a set of equivalent inequalities of the form shown
below:

←
C n1 − ∑

n2∈N
n1 6=n2

←
L n1,n2 ≤ 0,

∑
n2∈N
n1 6=n2

←
L n1,n2 −M ·

←
C n1 ≤ 0.

(12)

where M is a sufficiently large number (e.g. the largest
machine-representable number).

Proof. Let us introduce the following inequalities for readability
purposes:

←
C n1 = x,

∑ n2∈N
n1 6=n2

←
L n1,n2 = y.

Now we can rewrite Inequalities 12 as:

x− y≤ 0,
y−M · x≤ 0.

Considering that x can only be 0 or 1, and y≥ 0, the first constraint
can only be satisfied if either x = 0 or if y ≥ 1. Similarly, the
second constraint can only be satisfied if either y = 0 or if x = 1.
We can see that in order to satisfy both constraints either x = 0 and
y = 0 or x = 1 and y≥ 1 which is exactly the constraint defined in
Equivalence 9.

5 FREQUENCY THRESHOLD IDENTIFICATION

In section 3.2 we introduced the concepts of frequent and infre-
quent arcs in a log automaton. These concepts are based on a
frequency threshold ε . In this section we present a technique for
the automated identification of such a threshold.

The idea behind the technique is that in an optimal scenario arc
frequencies will have a symmetrical distribution shifted toward 1,
while the presence of infrequent arcs produces, in the worst case,
a positively skewed distribution shifted toward 0.

In order to identify the optimal frequency threshold we
need to introduce the concepts of lower-half interquartile range
(IQRL) and upper-half interquartile range (IQRU). These two
concepts are based on the interquartile range (IQR) defined as
the difference between the upper and the lower quartiles, i.e.
IQR = Q3−Q1, where Q1 is the first quartile and Q3 the third
quartile. In particular, the lower-half interquartile range is defined
as the difference between the median and the lower quartiles
IQRL = median−Q1. Similarly, the upper-half interquartile range
is defined as the difference between the upper quartile and the
median IQRU = Q3−median.

The ratio between these two concepts provides an estimation
of the skewness of the arc frequency distribution curve (we remind
the reader that the arc frequency distribution curve is defined in
the range [0, 1]), where ρIQR = IQRU

IQRL
> 1 indicates a positively

skewed distribution.
Using this ratio, the best frequency threshold is the threshold

that removes the minimum amount of infrequent arcs (i.e. arcs
with a frequency below the threshold) producing an arc frequency
distribution curve where ρIQR ≤ 1. Formally, ε can be defined as a
value x ∈ [0,Λλ (

m
x)] for which:

ρIQR(
m
x)≤ 1∧@y ∈ [0,1][ρIQR(

m
y)≤ 1∧| m

x |>
∣∣ m

y
∣∣],

where m
x is the set of frequent arcs obtained using x as a

threshold, ρIQR(m
x) is the ρIQR measured over the set of arcs

identified by m
x , and Λλ (

m
x) is the value of the λ percentile

of the arcs frequencies measured over the set of arcs identified by
 m

x .
When infrequent arcs, and consequently events, are removed,

the frequencies of the other arcs change, which affects the arc
frequency distribution curve. In order to address this problem we
propose to reiterate the log filtering several times using as input
the filtered log, until no more events are removed.

The log filtering technique presented in Sections 3–5 is de-
scribed in pseudo-code in Algorithm 1.

9

Algorithm 1: FilterLog
input: Event log L , finite set of tasks Γ, finite set of required tasks

ΓR ⊆ Γ, percentile λ

1 DirectFollowDependencies ⇐ computeDFD(L);
2 LogAutomaton A ⇐ generateAutomaton(Γ,);
3 FrequencyThreshold ε ⇐ discoverFrequencyThreshold(, λ);
4 FrequentArcs m ⇐ discoverFrequentArcs(, ε);
5 InfrequentArcs o ⇐ \ m;
6 AnomalyFreeAutomaton A f ⇐ solveILPProblem(A , Γ, ΓR, m,
 o);

7 PetriNet petrinet⇐ convertAutomaton(A f);
8 Alignment alignment⇐ alignPetriNetWithLog(petrinet, L);
9 FilteredLog F ⇐ removeNonReplayableEvents(L , alignment);

10 if |F |< |L | then
11 L ⇐F ;
12 go to 1;

13 return F

6 EVALUATION

In this section we present the results of three experiments to
assess the goodness of our filtering technique. To perform these
experiments, we implemented the technique as a plugin, namely
the “Infrequent Behavior Filter” plugin, for the ProM framework7.
The plug-in can use either Gurobi8 or LPSolve9 as ILP solver.

To identify infrequent events we used the alignment-based
replay technique proposed in [3]. This technique replays a log
and a Workflow net simultaneously, and at each state it identifies
one of three types of move: “synchronous move”, when an event
is executed in the log in synch with a transition in the net, “move
on log”, when an event executed in the log cannot be mimicked
by a corresponding transition in the net, and “move on model”
vice-versa. To apply this technique, we convert a log automaton
into a Workflow net, i.e. a Petri net with a single source and a
single sink. The conversion is obtained by creating a transition
with a single incoming place and a single outgoing place for
each state, while each arc in the automaton is converted into a
silent transition connecting the outgoing place of the source of the
arc with the incoming place of the target of the arc. In case of
multiple initial states a fictitious place is introduced. This place is
connected to every initial state via a silent transition for each initial
state. Similarly, in case of multiple final states, an artificial place
is introduced and every final state is connected to the new place
via a silent transition for each final state. The obtained Workflow
net is then aligned with the log. In order to remove infrequent
events from the log we have to remove all events corresponding to
a “move on log”, i.e. those events that exist in the log but cannot
be reproduced by the automaton. We decided to use the replay-
based alignment as it guarantees optimality under the assumption
that the Workflow net is easy sound [1]. A Workflow net is easy
sound if there is at least one firing sequence that can reach the
final marking [34]. This condition is fulfilled by construction
since the Workflow net obtained from an automaton has at least
one execution path from source to sink and does not contain
transitions having multiple incoming or outgoing arcs (i.e. there is
no concurrency).

6.1 Design
The design for the three experiments is illustrated in Figure 6. The
first two experiments were aimed at measuring how our technique

7. Available at https://svn.win.tue.nl/trac/prom/browser/Packages/NoiseFiltering
8. http://www.gurobi.com
9. http://lpsolve.sourceforge.net

copes with infrequent behavior in a controlled environment. For
this we used artificially generated logs where we incrementally
injected infrequent behavior. The third experiment, performed on
real-life logs, aimed at verifying if the same levels of performance
can be achieved in a real-life scenario.

In the first experiment, starting from an artificial log we gener-
ated several logs by injecting different levels of infrequent behav-
ior. These logs were provided as input to our filtering technique.
We then measured the amount of infrequent behavior correctly
identified by our technique, by computing the sensitivity (recall)
and the positive predictive value (precision) of our technique.10

In the second experiment the artificial logs previously gener-
ated were provided as input to several baseline discovery algo-
rithms, before and after applying our filtering technique. We then
measured the quality of the discovered models against the original
log in terms of fitness, precision, generalization and complexity
using the metrics described in Section 2. Additionally, as part of
this second experiment we also compared our filtering technique
with the SLF and PCL filtering techniques described in Section 2.

Finally, in the third experiment, we compared the results
of the baseline discovery algorithms before and after applying
our filtering technique using various real-life logs. In this last
experiment, we did not consider other filtering techniques since
in the second experiment we demonstrated the advantages of
our technique over existing ones. In addition, we measured the
time performance of our technique when filtering out infrequent
behavior from real-life logs.

For the second and third experiment, we used the following
discovery algorithms: InductiveMiner [23], Heuristics Miner [38],
Fodina [36] and ILP Miner [35]. We excluded the Fuzzy Miner
since fuzzy models do not have a well-defined semantics. For
each of these algorithms we used the default settings, since we
were interested in the relative improvement of the discovery result
and not in the absolute value.

In all experiments we used the following settings. We set the
λ percentile to 0.125 (i.e. half of a quartile), to allow a fine-tuned
removal of events in multiple small steps, selected all activities
as required, and used these settings to discover the frequency
threshold in order to filter out infrequent order dependencies from
the automaton. We used Guribi as the ILP solver.

The results of these experiments, as well as the artificial
datasets that we generated, are provided with the software dis-
tribution.

6.2 Datasets
For the first experiment, we generated a base log using CPN
Tools11 and from this base log we produced two sets of eight
“noisy” logs by injecting an incremental amount of infrequent
behavior, as a percentage of its total number of events. We used
different percentages ranging from 5% to 40%, with increments
of 5%, in order to simulate various levels of infrequent behavior
in real-life logs (we stopped at 40% since above this threshold the
behavior is no longer infrequent).

The first logset was obtained by inserting additional events
in the logs, while the second logset was obtained by inserting as
well as removing events (in equal amount). The labels of these
events were selected in such a way that the insertion or removal of

10. We used the terms sensitivity and positive predictive value to avoid
confusion with discovery fitness and precision.

11. http://cpntools.org

10

Artificial Log

Inject
Infrequent Behavior

Noisy Log

Filter
Infrequent Behavior

Filtered Log

Discover
Model

(a)

Compute
Measurements

Real-life Log

Filter
Infrequent Behavior

Filtered Log

Discover
Model

(b)

Compute
Measurements

Fig. 6: Experimental setup for artificial (Fig 6a) and real-life logs (Fig 6b).

an event did not yield a direct follow dependency that was already
present in the original log. We used a uniform distribution to select
in which traces and at which positions in those traces events were
to be inserted or removed.

For the second experiment we used the first of these two
logsets, i.e. that where infrequent behavior is captured by ad-
ditional events only. This is because we wanted to measure
the accuracy of our technique against the approach upon which
this has been designed, which is that of filtering out additional
infrequent behavior.

For the third experiment, however, we used four real-life logs
from different domains and of different size, for which we do not
have insights on the type of infrequent behavior. We used these
logs to evaluate the generalizability of the results obtained with the
first two experiments. Specifically, we used logs from financial and
medical institutions, and from Australian and Dutch companies.
Two such logs are publicly available and are those used for the
201212 and 201413 editions of the BPI Challenge. These two logs
were pre-filtered by removing infrequent labels (using the SLF
filter with a threshold of 90%). Using the full log was not possible
due to timing issues. For example, the measurement of the fitness
over a structured model produced using Inductive Miner using as
input the BPI Challenge 2012 log took over 30 minutes.

Table 2 reports the characteristics of all logs used in terms
of number of traces, number of events, number of unique labels
for each log, and percentage of infrequent behavior. The latter
is the percentage of events added for the artificial logs, and the
percentage of events removed from the real-life logs, given that for
real-life logs we did not have an infrequent behavior-free version.
In total we have a variety of logs ranging from a minimum of
617 traces to a maximum of 46,616 traces, from a minimum of
9,575 events to a maximum of 422,563 events, from a minimum
of 9 labels to a maximum of 22 labels. Likewise, the level of
infrequent behavior observed in real-life logs varies from 2% to
39%.

6.3 Results
As for the first experiment, Figure 7 plots the sensitivity and
the positive predictive value of our technique in identifying and
removing infrequent behavior, while varying the level of infre-
quent behavior in the log, for both logsets. Sensitivity is 0.9
independently of the level of infrequent behavior and of its type
(i.e. additional and/or missing events). The positive predictive
value, on the other side, never drops below 0.74 when the logs
only contain additional events, while it fluctuates when events are

12. doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
13. doi:10.4121/uuid:86977bac-f874-49cf-8337-80f26bf5d2ef

5% 10% 15% 20% 25% 30% 35% 40%

0.2

0.4

0.6

0.8

1

Sensitivity (additional events)
Positive predictive value (additional events)
Sensitivity (additional and missing events)
Positive predictive value (additional and missing events)

Fig. 7: Sensitivity and positive predictive value of our filtering
technique with varying levels of infrequent behavior, with addi-
tional events, as well as with additional and missing events.

missing from the log. This is due to the fact that our technique
cannot insert missing events when fixing the log, causing entire
traces to be discarded.

When analysing these measures we need to keep in mind that
logs with high levels of infrequent behavior (e.g. a level above
40%) pose a contradiction, as a high level of infrequent behavior
essentially corresponds to frequent behavior. We can observe that
our technique can correctly identify infrequent behavior, being
accurate as long as the amount of infrequent behavior is below
40% of the total number of events.

Coming to the second experiment, Figure 8 shows the results
of fitness, precision, F-score, and model size dimensions (cf.
Section 2.4 for the explanation of each metric), obtained through
application of the baseline discovery algorithms, with and without
our filtering technique, on the artificial logs. From these results
we can draw a number of observations. First, Heuristics Miner
and Fodina present a drop in precision (with a consequent drop
in the F-score value) and an increase in size when the amount of
noise increases, despite being noise-tolerant. This behavior cannot
be observed in the models discovered by the InductiveMiner and
the ILP Miner which can keep a constant level of F-score despite
increasing levels of noise. However, as a side effect, the precision
achieved by these two algorithms is very low (stable at around
0.2), which determines the low level of F-score (around 0.3 for
InductiveMiner and around 0.25 for ILP Miner).

Second, and most importantly, the results confirm the effec-
tiveness of our technique. The F-score significantly improves when
our technique is used compared to when it is not used (Mdn 0.892
instead of 0.320, with Mann-Whitney test U = 56, z = -6.139,
p = 0.000 < 0.05). This significant increment is explained by

11

the noticeable and significant increment of precision (Mdn 0.815
instead of 0.189, with Mann-Whitney test U = 64, z = -6.031,
p = 0.000 < 0.05) and small but significant increment of fitness
(Mdn 0.996 instead of 0.922, with Mann-Whitney test U = 288, z
= -3.061, p = 0.002 < 0.05). Such an increment of F-score is less
noticeable for models generated by the ILP Miner. This is because
the ILP miner, in order to fit every trace into the model, is prone to
generate “flower” models which have high fitness but suffer from
low precision.

Third, our technique also reduces the complexity of the
discovered models in a statistically significant way. Before its
application, the discovered model has a median of 69 nodes,
which is reduced to 49.5 after the application (Mann-Whitney test
U = 872, z = 4.843, p = 0.000 < 0.05). The Appendix reports
the measurements of the other structural complexity metrics:
the decrease in CFC, ACD and CNC confirm the reduction in
complexity observed from the results on model size in Figure 8.
The increase in density is expected, as this metric is inversely
correlated with size (smaller models tend to be denser) [24].

Finally, our technique improves fitness, precision, and reduces
complexity without negatively affecting generalization. In fact, the
latter does not vary and remains constant to a median of 0.997.

Additionally, we compared our technique with the SLF and
the PCL filtering techniques presented in Section 2.14 Figure 9
shows the results of fitness, precision, F-score, and model size
dimensions, obtained when applying all three techniques. The
results refer to the eight artificial logs used in the previous
experiment, and are averaged across all the discovery algorithms
used before.

Fitness differs significantly among the three techniques (Ours:
Mdn 0.996, SLF: Mdn 0.848, and PCL: Mdn 0.886, with Kruskal-
Wallis test H(2) = 44.351, p = 0.000 < 0.05). due to a significant
improvement of our technique over the other two (Fitness Dunn-
Bonferroni post hoc analysis: SFL-VS-Ours H(1) = 44.375, p =
0.000; PCL-VS-Ours H(1) = 33.625, p = 0.000).

14. Standard paramenters were used for SLF and PCL.

Artificial #Traces #Events #Unique %Infrequent
Log Labels Behavior
N5a 2249 13559 13 5%
N10a 2249 14312 13 10%
N15a 2249 15154 13 15%
N20a 2249 16101 13 20%
N25a 2249 17175 13 25%
N30a 2249 18401 13 30%
N35a 2249 19817 13 35%
N40a 2249 21468 13 40%
N5a&m 2249 12881 13 5%
N10a&m 2249 12880 13 10%
N15a&m 2249 12880 13 15%
N20a&m 2249 12881 13 20%
N25a&m 2249 12881 13 25%
N30a&m 2249 12881 13 30%
N35a&m 2249 12881 13 35%
N40a&m 2249 12880 13 40%
Real-life #Traces #Events #Unique %Infrequent
Log Labels Behavior
BPI2012 13087 148192 15 39%
BPI2014 46616 422563 9 13%
Hospital1 688 9575 19 2%
Hospital2 617 9666 22 2%

TABLE 2: Characteristics of the logs used in the evaluation.

N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40

0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s

Ours Original

Inductive Heuristics Fodina ILP

(a) Fitness comparison on artificial logs

N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40

0

0.2

0.4

0.6

0.8

Pr
ec

is
io

n

Ours Original

Inductive Heuristics Fodina ILP

(b) Precision comparison on artificial logs

N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N

5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N

5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N

5

N
10

N
15

N
20

N
25

N
30

N
35

N
40

0

0.2

0.4

0.6

0.8

F-
sc

or
e

Ours Original

Inductive Heuristics Fodina ILP

(c) F-score comparison on artificial logs

N
5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N

5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N

5

N
10

N
15

N
20

N
25

N
30

N
35

N
40 N

5

N
10

N
15

N
20

N
25

N
30

N
35

N
40

0

50

100

150

200

Si
ze

Ours Original

Inductive Heuristics Fodina ILP

(d) Size comparison on artificial logs

Fig. 8: Fitness, Precision, F-score, and Size comparison between
filtered and original log using different artificial logs and discovery
algorithms.

Precision also presents significant differences among the three
techniques (Ours: Mdn 0.815, SLF: Mdn 0.410, and PCL: Mdn
0.644, with Kruskal-Wallis test H(2) = 18.005, p = 0.000 < 0.05).
This difference is explained by a significant improvement of our
technique over the SLF filter (Precision Dunn-Bonferroni post hoc
analysis: SFL-VS-Ours H(1) = 29.531, p = 0.000). As shown in
Figure 9.d, our technique has also a noticeable improvement over
PCL, though this is not statistically significant.

As expected, these differences in terms of fitness and precision
are reflected on the F-score (Ours: Mdn 0.892, SLF: Mdn 0.559,
and PCL: Mdn 0.746, with Kruskal-Wallis test H(2) = 20.123, p
= 0.000 < 0.05), with a significant improvement of our technique
over the other two (F-score Dunn-Bonferroni post hoc analysis:
SLF-VS-Ours Kruskal-Wallis test H(1) = 30.938, p = 0.000;
PCL-VS-Our Kruskal-Wallis test H(1) = 19.125, p = 0.006).

Finally, there are also significant differences in terms of size
(Ours: Mdn 49.5, SLF: Mdn 36.5, and PCL: Mdn 51, with

12

N5 N10 N15 N20 N25 N30 N35 N40
0

0.2

0.4

0.6

0.8

1

1.2

Fi
tn

es
s

Ours SLF PCL

(a) Fitness comparison on artificial logs

N5 N10 N15 N20 N25 N30 N35 N40
0

0.2

0.4

0.6

0.8

Pr
ec

is
io

n

Ours SLF PCL

(b) Precision comparison on artificial logs

N5 N10 N15 N20 N25 N30 N35 N40
0

0.2

0.4

0.6

0.8

1

F-
sc

or
e

Ours SLF PCL

(c) F-score comparison on artificial logs

N5 N10 N15 N20 N25 N30 N35 N40
0

10

20

30

40

50

60

70

80

Si
ze

Ours SLF PCL

(d) Size comparison on artificial logs

Fig. 9: Fitness, Precision, F-score, and Size using three different
log filtering techniques: ours, SLF and PCL, for different artificial
logs and averaged across different discovery algorithms.

Kruskal-Wallis test H(2) = 11.473, p = 0.003 < 0.05). Our
technique leads to models that are generally smaller than those
produced by PCL, though the use of SLF produces the smallest
models. This is because this filter removes all events of infrequent
activities, leading to a significantly lower number of nodes (Size
Dunn-Bonferroni post hoc analysis: SFL-VS-PCL Kruskal-Wallis
test H(1) =−23.188, p = 0.001).

The results on real-life logs, summarized in Figure 10, are in
line with those obtained on artificial logs. The F-score improves
(Mdn 0.673 instead of 0.493) due to a significant improvement
in precision (Mdn 0.545 instead of 0.339, with Mann-Whitney
test U = 72.0, z = -2.111, p = 0.035 < 0.05) despite a reduction
in fitness (Mdn 0.847 instead of 0.905, with Mann-Whitney
test U = 196.5, z = 2.583, p = 0.008 < 0.05). The size of the
discovered model is again significantly reduced from a median of
91 elements to a median of 64.5 elements (Mann-Whitney test U
= 182, z = 2.036, p = 0.043 < 0.05). Similarly, in the Appendix

15. The drop in precision (and F-score) in the result obtained from Fodina
on the BPI2014 log is caused be the discovered model being unsound.

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s

Ours Original

Inductive Heuristics Fodina ILP

(a) Fitness comparison on real-life logs

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

Ours Original

Inductive Heuristics Fodina ILP

(b) Precision comparison on real-life logs

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

0

0.2

0.4

0.6

0.8

1

F-
sc

or
e

Ours Original

Inductive Heuristics Fodina ILP

(c) F-score comparison on real-life logs

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

0
20
40
60
80

100
120
140
160
180
200

Si
ze

Ours Original

Inductive Heuristics Fodina ILP

(d) Size comparison on real-life logs

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

B
PI

20
12

B
PI

20
14

H
os

pi
ta

l1

H
os

pi
ta

l2

0

0.2

0.4

0.6

0.8

1

G
en

er
al

iz
at

io
n

Ours Original

Inductive Heuristics Fodina ILP

(e) Generalization comparison on real-life logs

Fig. 10: Fitness, Precision, F-score, Size and Generalization com-
parison between filtered and original log using different real-life
logs and discovery algorithms.15

13

Log Filtering?
Filtering time Discovery time

Inductive Heuristics Fodina ILP
Avg StDev Avg StDev Avg StDev Avg StDev Avg StDev

[secs] [secs] [secs] [secs] [secs] [secs] [secs] [secs] [secs] [secs]

BPI 2012 Yes 249.1 7.26 1.5 0.09 1.7 0.09 2.1 0.21 146.5 3.74
No - - 2.1 0.05 2.3 0.04 5.7 0.81 292.1 8.90

BPI 2014 Yes 812.4 24.39 4.6 0.11 5.6 0.23 15.2 0.56 161.2 1.12
No - - 6.9 0.34 7.5 0.23 49.6 13.56 714.7 28.74

Hospital 1 Yes 31.6 1.5 0.5 0.03 0.4 0.04 0.4 0.07 151.5 2.57
No - - 0.6 0.08 0.4 0.05 0.6 0.02 153.6 2.09

Hospital 2 Yes 49.7 2.21 0.5 0.09 0.4 0.03 0.4 0.03 161.7 1.56
No - - 0.5 0.04 0.4 0.09 0.5 0.08 163 2.13

TABLE 3: Time performance on real-life logs, with and without using our filtering technique.

we can see that CFC, ACD, CNC decrease also for the real-life
logs. Finally, generalization slightly increases from a median of
0.892 to a median of 0.897.

Time performance. In the experiment with real-life logs, the
technique took on average 286 secs to filter a log, with a minimum
time of 30 secs (Hospital 1) and a maximum time of 14.23
mins (BPI 2014). The summary statistics of the time performance
obtained for every log (computed over 10 runs) are reported in
Table 3. As we can see, time performance is within reasonable
bounds. Moreover, the additional time required for filtering a log
is compensated by the time saved afterwards, in the discovery of
the process model. On average, model discovery is 1.7 times faster
when using a filtered log.

7 CONCLUSION

In this paper we presented a technique for the automatic removal
of infrequent behavior from process execution logs. The core idea
is to use infrequent direct follows dependencies between event
labels as a proxy for infrequent behavior. These dependencies are
detected and removed from an automaton built from the event
log, and then the original log is updated accordingly, by removing
individual events using alignment-based replay [3].

We demonstrated the effectiveness and efficiency of the pro-
posed technique using a variety of artificial and real-life logs, on
top of mainstream process discovery algorithms. The results show
a significant improvement over fitness, precision and complexity
without a negative effect on generalization. Time performance is
within reasonable bounds and model discovery is on overage 1.7
times faster when using the log filtered with our technique. More-
over, the comparison with two baseline techniques for automatic
filtering of process event logs, shows that our technique provides
a statistically significant improvement of fitness and precision
over these techniques, while leading to models of comparable
size. These improvements are a byproduct of a noise-free log. A
noise-free log contains less events and direct-follow dependencies.
These two elements play a significant role on the performance
and accuracy of a discovery algorithm. The performance of a
discovery algorithm is proportional to the number of events in
the log. Hence, less events in the log means less time required
to discover a model. Additionally, less direct-follow dependencies
means less (infrequent) behavior that a model should account for,
hence the improvement in accuracy (fitness and precision) as well
as in model complexity.

In future, we plan to consider other types of event dependen-
cies, e.g. transitive ones, as well as to improve the handling of logs
with missing events. Another avenue for future work is to develop

a technique to isolate behavior (frequent or infrequent) in order to
compare logs with similar behaviors.

ACKNOWLEDGMENT

This research is funded by the ARC Discovery Project
DP150103356, and supported by the Australian Centre for Health
Services Innovation #SG00009-000450.

REFERENCES

[1] A. Adriansyah. Aligning Observed and Modeled Behaviour. PhD thesis,
Technische Universiteit Eindhoven, 2014.

[2] A. Adriansyah, J. Munoz-Gama, J. Carmona, B.F. van Dongen, and
W.M.P. van der Aalst. Alignment based precision checking. In Proc.
of BPM Workshops, pages 137–149, 2012.

[3] A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Confor-
mance checking using cost-based fitness analysis. In Proc. of EDOC,
pages 55–64, 2011.

[4] C.C. Aggarwal. Outlier Analysis. Springer, 2013.
[5] S. Basu and M. Meckesheimer. Automatic outlier detection for time

series: an application to sensor data. KAIS, 11(2):137–154, 2006.
[6] S. Budalakoti, A.N. Srivastava, and M.E. Otey. Anomaly detection and

diagnosis algorithms for discrete symbol sequences with applications to
airline safety. IEEE TSMCS, 39(1):101–113, Jan 2009.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete
sequences: A survey. IEEE TKDE, 24(5):823–839, May 2012.

[8] R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa. Beyond
tasks and gateways: Discovering BPMN models with subprocesses,
boundary events and activity markers. In Proc. of BPM, pages 101–117,
2014.

[9] K. Das, J. Schneider, and D.B. Neill. Anomaly pattern detection in
categorical datasets. In Proc. of ACM SIGKDD, pages 169–176, 2008.

[10] G. Florez-Larrahondo, S.M. Bridges, and R. Vaughn. Efficient modeling
of discrete events for anomaly detection using hidden markov models. In
Proc. of ISC, pages 506–514, 2005.

[11] C.W. Günther and W.M.P. van der Aalst. Fuzzy mining - adaptive process
simplification based on multi-perspective metrics. In Proc. of BPM, pages
328–343, 2007.

[12] M. Gupta, C.C. Aggarwal, and J. Han. Finding top-k shortest path
distance changes in an evolutionary network. In Proc. of SSTD, pages
130–148. Springer, 2011.

[13] M. Gupta, J. Gao, C.C. Aggarwal, and J. Han. Outlier detection for
temporal data: A survey. IEEE TKDE, 26(9):2250–2267, 2014.

[14] M. Gupta, A. Mallya, S. Roy, J.H.D. Cho, and J. Han. Local Learning for
Mining Outlier Subgraphs from Network Datasets, pages 73–81. 2014.

[15] R. Gwadera, M.J. Atallah, and W. Szpankowski. Reliable detection of
episodes in event sequences. KAIS, 7(4):415–437, May 2005.

[16] S.A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using
sequences of system calls. J. Comput. Secur., 6(3):151–180, August
1998.

[17] R.M. Karp. Reducibility among combinatorial problems. In Proc. of
CCC, pages 85–103. Springer US, 1972.

[18] E. Keogh, J. Lin, S.-H. Lee, and H. van Herle. Finding the most unusual
time series subsequence: algorithms and applications. KAIS, 11(1):1–27,
2006.

[19] E. Keogh, S. Lonardi, and B. Chiu. Finding surprising patterns in a time
series database in linear time and space. In Proc. of ACM SIGKDD,
pages 550–556, 2002.

14

[20] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proc. of IJCAI, pages 1137–1145,
1995.

[21] T. Lane and C.E. Brodley. Sequence matching and learning in anomaly
detection for computer security. In Proc of AI, 1997.

[22] T. Lane and C.E. Brodley. Temporal sequence learning and data reduction
for anomaly detection. ACM TISS, 2(3):295–331, 1999.

[23] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering
block-structured process models from event logs containing infrequent
behaviour. In Proc. of BPM Workshops, pages 66–78, 2014.

[24] J. Mendling, H.A. Reijers, and J. Cardoso. What makes process models
understandable? In Proc. of BPM, pages 48–63, 2007.

[25] S. Muthukrishnan, R. Shah, and J.S. Vitter. Mining deviants in time
series data streams. In Proc. of SSDM, pages 41–50, 2004.

[26] Object Management Group (OMG). Business Process Model and No-
tation (BPMN) ver. 2.0. Object Management Group (OMG), January
2011.

[27] P. Sun, S. Chawla, and B. Arunasalam. Mining for outliers in sequential
databases. In Proc. of SIAM, pages 94–105, 2006.

[28] S. Suriadi, R. Andrews, A.H.M. ter Hofstede, and M. Wynn. Event log
imperfection patterns for process mining - towards a systematic approach
to cleaning event logs. Information Systems, July 2016.

[29] S. Suriadi, R. Mans, M. Wynn, A. Partington, and J. Karnon. Measuring
patient flow variations: A cross-organisational process mining approach.
In Proc. of AP-BPM, pages 43–58, 2014.

[30] S. Suriadi, M. Wynn, C. Ouyang, A.H.M. ter Hofstede, and N.J. van
Dijk. Understanding process behaviours in a large insurance company in
australia: A case study. In Proc. of CAiSE, pages 449–464, 2013.

[31] W.M.P. van der Aalst. Process Mining - Data Science in Action, volume
2nd Edition. Springer, 2016.

[32] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Replaying
history on process models for conformance checking and performance
analysis. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery,
2(2):182–192, 2012.

[33] W.M.P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE TKDE, 16(9):1128–
1142, 2004.

[34] R.A. van der Toorn. Component-based software design with Petri nets:
an approach based on inheritance of behavior. PhD thesis, Technische
Universiteit Eindhoven, 2004.

[35] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Sere-
brenik. Process discovery using integer linear programming. Fundam.
Inform., 94(3-4):387–412, 2009.

[36] S.K.L.M. vanden Broucke, J. De Weerdt, J. Vanthienen, and B. Baesens.
Fodina: a robust and flexible heuristic process discovery technique. http:
//www.processmining.be/fodina/, 2013. Last accessed: 03/27/2014.

[37] J. Wang, S. Song, X. Lin, X. Zhu, and J. Pei. Cleaning structured event
logs: A graph repair approach. In Proc. of ICDE, pages 30–41, 2015.

[38] A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible heuristics miner (FHM).
In Proc. of CIDM, pages 310–317, 2011.

[39] D. Yankov, E. Keogh, and U. Rebbapragada. Disk aware discord
discovery: finding unusual time series in terabyte sized datasets. KAIS,
17(2):241–262, 2008.

[40] X. Zhang, P. Fan, and Z. Zhu. A new anomaly detection method based
on hierarchical hmm. In Proc. of PDCAT, pages 249–252, 2003.

Raffaele Conforti is Research Fellow in the
School of Information Systems at the Queens-
land University of Technology, Australia. He is
conducting research in the area of business pro-
cess management, with respect to business pro-
cess automation and process mining. In particu-
lar his research focuses on automated process
discovery and automatic detection, prevention
and mitigation of process-related risks during the
execution of business processes.

Marcello La Rosa is Professor of Business
Process Management (BPM) and the academic
director for corporate programs and partner-
ships at the Information Systems school of the
Queensland University of Technology, Brisbane,
Australia. His research interests include process
consolidation, mining and automation, in which
he published over 80 papers. He leads the Apro-
more initiative (www.apromore.org) a strate-
gic collaboration between various universities for
the development of an advanced process model

repository. He is co-author of the textbook Fundamentals of Business
Process Management (Springer, 2013).

Arthur H.M. ter Hofstede is a Professor in the
Information Systems School in the Science and
Engineering Faculty, Queensland University of
Technology, Brisbane, Australia, and is Head of
the Business Process Management Discipline.
He is also a Professor in the Information Sys-
tems Group of the School of Industrial Engineer-
ing of Eindhoven University of Technology, Eind-
hoven, The Netherlands. His research interests
are in the areas of business process automation
and process mining.

APPENDIX

Table 4 reports the measurements of the structural complexity
metrics: CFC, ACD, CNC, and density. The decrease in CFC,
ACD and CNC confirm the reduction in complexity observed from
the results on model size in Figure 8. The increase in density is
expected, as this metric is inversely correlated with size (smaller
models tend to be denser) [24].

15

Log Measure Inductive Heuristics Fodina ILP
Original Ours Original Ours Original Ours Original Ours

N5

CFC 39 20 65 31 45 31 205 66
ACD 3.500 3.818 4.182 3.444 3.840 3.444 14.093 9.190
CNC 1.294 1.209 1.422 1.167 1.338 1.222 6.927 3.885
Density 0.019 0.029 0.017 0.016 0.021 0.023 0.128 0.155

N10

CFC 41 20 188 31 65 31 212 37
ACD 3.533 3.818 7.911 3.444 4.333 3.444 14.345 6.467
CNC 1.314 1.209 2.949 1.167 1.506 1.222 7.054 2.500
Density 0.019 0.029 0.022 0.016 0.019 0.023 0.128 0.119

N15

CFC 35 20 221 31 64 31 193 63
ACD 3.917 3.818 8.532 3.444 4.278 3.444 13.453 9.050
CNC 1.379 1.209 3.320 1.167 1.500 1.222 6.611 3.800
Density 0.024 0.029 0.022 0.016 0.019 0.023 0.125 0.158

N20

CFC 39 20 216 31 105 31 202 56
ACD 3.643 3.818 8.057 3.444 5.893 3.444 14.132 8.263
CNC 1.333 1.209 3.119 1.167 2.125 1.222 6.944 3.458
Density 0.021 0.029 0.021 0.016 0.022 0.023 0.131 0.150

N25

CFC 37 20 196 31 129 31 166 76
ACD 3.769 3.818 7.188 3.444 5.765 3.444 14.070 9.783
CNC 1.355 1.209 2.759 1.167 2.085 1.222 6.886 4.179
Density 0.022 0.029 0.020 0.016 0.018 0.023 0.160 0.155

N30

CFC 37 20 185 31 106 31 230 57
ACD 3.769 3.818 6.967 3.444 5.309 3.444 13.246 7.850
CNC 1.355 1.209 2.654 1.167 1.849 1.222 6.530 3.320
Density 0.022 0.029 0.020 0.016 0.018 0.023 0.101 0.138

N35

CFC 37 22 191 30 143 30 187 37
ACD 3.769 3.833 7.085 3.333 6.842 3.333 12.527 6.267
CNC 1.355 1.217 2.712 1.155 2.476 1.208 6.161 2.348
Density 0.022 0.027 0.020 0.017 0.020 0.023 0.112 0.107

N40

CFC 37 22 301 30 152 30 232 28
ACD 3.769 3.833 8.527 3.333 6.481 3.333 13.794 5.667
CNC 1.355 1.217 3.497 1.155 2.257 1.208 6.797 2.000
Density 0.022 0.029 0.018 0.017 0.016 0.023 0.108 0.100

BPI 2012

CFC 34 29 66 21 71 25 118 18
ACD 3.273 3.333 4.516 3.143 5.407 3.250 11.686 4.500
CNC 1.200 1.193 1.388 1.101 1.433 1.164 5.225 1.429
Density 0.019 0.021 0.014 0.016 0.014 0.022 0.134 0.053

BPI 2014

CFC 25 26 438 64 131 57 114 37
ACD 3.556 3.100 8.183 5.606 5.030 4.538 12.147 7.267
CNC 1.228 1.161 3.551 1.795 1.861 1.416 5.914 3.167
Density 0.022 0.019 0.019 0.025 0.016 0.019 0.174 0.186

Hospital 1

CFC 39 22 300 149 124 33 337 47
ACD 3.556 4.889 6.708 5.115 4.552 3.778 17.734 7.647
CNC 1.263 1.300 2.464 1.681 1.584 1.254 8.621 2.741
Density 0.017 0.033 0.014 0.012 0.013 0.022 0.133 0.105

Hospital 2

CFC 38 26 308 41 137 39 571 64
ACD 3.615 4.000 6.836 4.190 4.206 4.000 26.728 9.273
CNC 1.244 1.277 2.395 1.247 1.490 1.306 12.917 3.548
Density 0.015 0.028 0.013 0.014 0.010 0.021 0.156 0.118

TABLE 4: Structural complexity measurements for the second and the third experiment.

