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Abstract Process mining is a well established research discipline comprising approaches
for process analysis based on the history of process executions. One of the main directions
in the process mining field is process discovery. Process discovery aims to develop methods
for constructing process models from the event logs. The ultimate goal of process discovery
is to obtain readable process models, which represent process behavior in the best possible
way. Process discovery techniques rarely use higher-level process modeling notations like
BPMN and tend to focus on the control-flow perspective. However, end-users are more
familiar with notations like BPMN and are interested in the data and resource perspectives.
This paper gives an overview of existing process discovery techniques and presents a BPMN
meta-model, which describes models that can be obtained from the event logs using existing
discovery techniques. Besides that the paper presents an integrated discovery approach for
the construction of high-level BPMN models that comply with the BPMN meta-model. The
proposed integrated approach was applied to real-life event logs and it was shown that it
allows for obtaining readable process models, which reflect the process behavior.

Keywords process mining, process discovery, BPMN (Business Process Model and
Notation), process modeling perspectives

This work was supported by the Basic Research Program at the National Research University Higher School
of Economics, funded by RFBR and Moscow city Government according to the Research project No 15-
37-70008 “mol_a_mos” and RFBR (Project No 15-37-21103) and was supported by the Eureka-Eurostars
PROMPT project (E!6696).

A. A. Kalenkova
National Research University Higher School of Economics, Moscow, Russia
E-mail: akalenkova@hse.ru

A. Burattin
University of Innsbruck, Innsbruck, Austria
E-mail: andrea.burattin@uibk.ac.at

M. de Leoni ·W. M. P. van der Aalst
Eindhoven University of Technology, Eindhoven, Netherlands
E-mail: m.d.leoni@tue.nl,w.m.p.v.d.aalst@tue.nl

A. Sperduti
The University of Padua , Padua, Italy
E-mail: sperduti@math.unipd.it



2 A. A. Kalenkova et al.

1 Introduction

Information systems in different domains, such as healthcare, tourism, banking, government
and others, record operational behavior in the form of event logs. The process mining disci-
pline [1] offers dozens of techniques to discover, analyze, and visualize processes running
in information systems basing on the event logs. The representational bias (the language
for processes representation) plays an important role in the process discovery. In this work
we take BPMN language [24] as a representational bias and as a starting point for process
discovery. BPMN is a common process modeling language widely used by analysts and pro-
grammers in various domains. This work aims to bridge the gap between existing process
mining techniques and BPMN – a commonly used industrial process modeling standard.
Although there exist techniques [9, 10, 14, 16] for discovering some of the BPMN modeling
constructs, these are often limited to a single perspective, e.g., just the control flow, sub-
processes, or just resources. The goal of this work was to formalize and project the BPMN
specification onto the process mining domain and suggest a unified integrated approach al-
lowing for the discovery of multiperspective BPMN models. Such an approach gives an
ability not only to analyze and visualize discovered processes in BPMN-complaint editors,
but even automate their executions using one of the BPMN engines.

First, we analyzed the BPMN meta-model [24], extracting the main modeling elements,
which can be discovered using process mining techniques. Thus, three main types of BPMN
models, which inherit core BPMN modeling constructs were identified: BPMN models with
data, hierarchical BPMN models and BPMN models with resources. Formal execution se-
mantics for these types of models were defined. After that we analyzed the applicability
of the existing process discovery techniques to mine these specific models. For hierarchi-
cal BPMN models a novel algorithm, which uses a well-defined method for constructing
composite process models from localized event logs [4], was adopted and justified. It was
proven that each log trace that can be replayed by a composite process model, constructed
from a localized event log, can be replayed by the target hierarchical BPMN model. Then
an integrated approach for mining integrated BPMN models, which combines different per-
spectives, including data, resource, and hierarchical BPMN models, was developed. The
integrated discovery approach was implemented as plugin for ProM (Process Mining Frame-
work) [13]. It was evaluated using real-life event logs taken from government, online sales
and banking domains. The underlying approach for discovering composite process models
from localized event logs [4] allows us to apply some of the techniques, such as resource
discovery and alignment construction, to each of the submodels, thus significantly reducing
the overall discovery time. The behavioral and structural characteristics of the discovered
BPMN models were also evaluated. The structural characteristics of BPMN models discov-
ered from real-life event logs were compared with the structural characteristics of BPMN
models taken from the Signavio model collection, and thus, it was shown that the models
discovered automatically using the integrated approach resemble manually created models,
which are common for the analysts.

The remainder of this paper is organized as follows. Section 2 gives an overview of
related work. In Section 3 all notions, including event logs, Petri nets, BPMN modeling
constructs are introduced. Besides that Section 3 presents semantics for various types of
BPMN modeling constructs. Section 4 demonstrates the applicability of the existing pro-
cess discovery techniques to mine different types of BPMN models. Moreover, Section 4
introduces and justifies an approach for the discovery of hierarchical BPMN models, using
techniques described in [4]. An integrated discovery approach is presented in Section 4 as
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well. Section 5 describes implementation aspects of the integrated discovery approach. All
experimental results are presented in Section 6. Section 7 concludes the paper.

2 Related Work

Recently a few techniques for discovering BPMN models from event logs were proposed.
In [9, 14] a novel method for mining hierarchical BPMN models with subprocesses is pre-
sented. Paper [10] suggests an approach for discovering BPMN models represented by con-
trol and resource perspectives.

Our approach is an extension of the previous work limited to flat BPMN models discov-
ery [16, 17]. In [16] a conversion algorithm for relating Petri nets and flat BPMN models
is introduced and justified. This algorithm gives a solid background for applying advanced
discovery techniques proposed in this paper. In [17] technical aspects of its implementation
are presented.

In contrast to the approaches [10], which are limited to just the control and resource per-
spectives, and based on a rather specific process discovery algorithm, we present a flexible
discovering framework based on the BPMN meta-model tailored towards the process min-
ing field. Thus, our approach incorporates various discovery techniques in a flexible manner,
allowing discovering data flows, subprocesses and other modeling elements.

The subprocess discovery technique presented in this paper is based on a robust ap-
proach for discovering composite process models from localized event logs enriched with
additional information on the so-called "location" of events (enabling the discovery of hier-
archical models) [4]. The approach [4] gives formal guarantees on replay of the log traces,
is flexible and can be potentially used for the discovery of different types of communication
constructions. In this work we used it for mining subprocesses with multiple arbitrary out-
going flows modeled as cancellations, while in [9, 14] only global cancellations, which lead
to a termination event of the entire process model are discovered. Moreover, in comparison
with [9, 14] due to the formal nature of the approaches [4] and [16] the language inclusion
property of the proposed subprocess discovery technique was verified.

3 Event Logs, Petri Nets, and BPMN Modeling Constructs

This section defines main concepts, including event logs and process modeling formalisms,
which will be referred later in this paper.

3.1 Event Logs

Event logs, containing information systems’ behavior, are considered as a starting point for
the process discovery algorithms.

The definition of event logs reflects the definition reported in [4]. Let UA be a set of
possible activity names, UAttr and UVal be sets of event attributes and their values.

A tuple L = (E,Tr, act, attr) is called an event log, if E is a set of events, Tr ⊆ E? is a
set of traces (each trace is a sequence of events), act : E → UA maps events onto activity
names, and attr : E → (UAttr 9 UVal)

1 defines per event the attributes and their values.
Consider the fragment of an event log presented in Tab. 1. This event log contains infor-

19 denotes a partial function, which is defined for a subset of domain elements.
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Case ID Activity Name Resource Time (minutes)
e1 1 "receive application" "John" -
e2 1 "send acknowledgment of receipt" "John" 1
e3 2 "receive application" "Mary" -
e4 1 "process application" "Kate" 124
e5 2 "send acknowledgment of receipt" "Mary" 5
e6 2 "forward to competent authority" "Jane" 25

Table 1: An event log of an application processing procedure.

mation about executions of an application processing procedure. The arrival of an applica-
tion initiates a process instance. After the application is received an acknowledgment is sent
back to the applicant and the application is either processed or forwarded to a competent
authority. Each case (identified by the attribute Case ID) corresponds to the processing of a
concrete application and represents a sequence of events (a trace). The values of Resource
and Time attributes are given for these events. The resource attribute sets an event performer,
while Time attribute presents time in minutes needed for the execution of a corresponding
operation. More formally, this event log can be defined as a tuple L = (E,Tr, act, attr),
where E = {e1, e2, e3, e4, e5, e6}, Tr = {〈e1, e2, e4〉 , 〈e3, e5, e6〉}, act(e1) = act(e3) =
"receive application", act(e2) = act(e5) = "send acknowledgment of receipt", act(e4) =
"process application", act(e6) = "forward to competent authority". Event attributes are de-
fined in the following way: attr(e1)("Resource") = "John", attr(e2)("Time") = "1", where
UA = { "receive application", "send acknowledgment of receipt", "process application",
"forward to competent authority" }, UAttr = { "Resource", "Time" }, UVal = { "John",
"Mary", "Kate", "Jane", 1, 5, 25, 124 }.

Suppose that E′ ⊆ E is a subset of events, then the projection L↑E′ of the log L =
(E,Tr, act, attr) on set E′ is defined as follows: L↑E′ = (E↑E′ ,Tr↑E′ , act↑E′ , attr↑E′),
where E↑E′ = E∩E′, act↑E′ = act∩ (E′ → UA), attr↑E′ = attr∩ (E′ → (UAttr 9 UVal)),
and Tr↑E′ = {t↑E′ |t ∈ Tr}, where t↑E′ is defined inductively: if t = 〈〉, then t↑E′ = 〈〉, if
t = 〈e〉 · t′, and e ∈ E′, then t↑E′ = 〈e〉 · t′↑E′ , if e /∈ E′, then t↑E′ = t′↑E′ .

3.2 Petri Nets

Petri nets is the most popular low-level process modeling formalism used in the context of
process mining. A Petri net is a tuple PN = (P, T, F,Minit,Mfinal), where P is the set of
places, T is the set of transitions, P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is the flow
relation, and Minit,Mfinal are initial and final markings respectively. A marking is a function
M ∈ P → N, which maps places to natural numbers. Thus, Minit,Mfinal ∈ P → N. In a
marking M place p contains M(p) tokens represented as black dots. In addition, we will use
the following notation: by [p1, p

3
2] we will denote a marking, in which place p1 contains one

token, place p2 contains three tokens, while other place are empty.
For transition t sets of input and output places are defined as: •t = {p ∈ P |(p, t) ∈ F},

and t• = {p ∈ P |(t, p) ∈ F} correspondingly. Places are represented by circles, transitions
by boxes, and the flow relation by directed arcs.

Transition t is enabled in marking M iff ∀p ∈ •t : M(p) ≥ 1, i.e., each input place
contains at least one token. An enabled transition t may fire, i.e., one token is removed from
each of the input places •t and one token is added to each of output places t•.
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A labeled Petri net PN = (P, T, F,Minit,Mfinal, l) is defined as a Petri net (P, T, F,Minit,

Mfinal) and a labeling function l ∈ T 9 UA, which maps transitions to a universe of activity
names. If l is not defined for t ∈ T , then t is called invisible and represented as a black box.
Function l can be applied to transition sequences using the following inductive definition:
l(〈〉) = 〈〉, l(〈t〉 · σ′) equals l(t) · l(σ′), if l(t) is defined, and l(σ′), otherwise.

Let us consider an event log L = (E,Tr, act, attr). We say that trace 〈e1, ..., ek〉 ∈ E
can be replayed by a labeled Petri net PN = (P, T, F,Minit,Mfinal, l) if there is a sequence
of transition firings σ, leading from the initial marking Minit to the final marking Mfinal, such
that l(σ) = 〈act(e1), ..., act(ek)〉.2

Now let us extend Petri nets and define Petri nets with data, which were introduced in
[22]. A Petri net with data is a tuple DPN = (PN, V, U,R,W,G), where PN is a labeled
Petri net, V is a set of variables, U is a domain function, which defines possible values
for each variable v. By D = ∪v∈V U(v) we denote a set of all possible variables’ values.
Functions R : T → 2V and W : T → 2V define sets of variables read and written by each
transition respectively. Guard function G : T 9 GV , where GV is a set of guards, associates
transitions with guards. Variables are shown as circles with dashed boarders, transitions,
which read or write variables, are connected with them by incoming or outgoing dashed
arrows respectively.

A transition is enabled iff a corresponding guard (in case it was defined for that transi-
tion) evaluates to true and all the input places contain at least one token. A state of a Petri
net with data is a pair (M,Val), such that M is a marking, and Val is a function which maps
variables to its values, i.e., Val : V → D ∪ {⊥}. Sign ⊥ denotes that the variable does not
have a value.

An example of a Petri net with data DPN = (PN, V, U,R,W,G), where PN =
(P, T, F,Minit,Mfinal, l) is presented in Fig. 1.

pay by 

card

choose 

payment 

type

book

 hotel

view hotel 

details

p1 p2

p5

p3 p4 p7

p6

t1
t2

t3

t4

t6

t7

pay by 

e-money

PaymentType=

''e-money'' 

PaymentType=

''card'' 

t5

PaymentType=

''none'' 

Payment

Type

Fig. 1: An example of a Petri net with data.

This Petri net describes a booking process, where the user first books a hotel,
chooses the payment type, pays for the reservation (using one of the payment types)
or skips the payment, and views the hotel details (before, after, or during the pay-

2Note that invisible steps in the process model do not need to be observed in the event log.
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ment). Formally, P = {p1, p2, p3, p4, p5, p6, p7}, T = {t1, t2, t3, t4, t5, t6, t7}, F =
{(p1, t1), (t1, p2), (t1, p5), (p2, t2), (t2, p3), (p3, t3), (p3, t4), (p3, t5), (t3, p4), (t4, p4), (t5,
p4), (p4, t7), (p5, t6), (t6, p6), (p6, t7), (t7, p7)}, l(t1) = "book hotel", l(t2) ="choose
payment type", l(t3) ="pay by e-money", l(t4) ="pay by card", l(t6) ="view hotel details",
for transitions t5 and t7 the value of l is not defined. Place p1 contains one token in the
initial marking, formally Minit = [p1], the final marking can be set as Mfinal = [p7]. The set
of variables V is represented by a variable PaymentType, i.e., V = {PaymentType}, the
set of its possible values is defined as U(PaymentType) = {"e-money","card","none"}.
Transition t2 writes the variable PaymentType, transitions t3, t4, and t5 read it, formally,
W (t2) = {PaymentType}, R(t3) = R(t4) = R(t5) = {PaymentType}. More-
over, guard conditions for t3, t4, and t5 depend on the value of PaymentType: G(t3),
G(t4), and G(t5) are defined as "PaymentType="e-money", "PaymentType="card", and
"PaymentType="none" respectively, for other transitions the guard function is not specified.
This Petri net can replay 8 traces, represented by distinct sequences of activity names. For
instance, 〈e1, e2, e3, e4〉, where act(e1) = "book hotel", act(e2) = "choose payment type",
act(e3) = "view hotel details", act(e4) = "pay by card", is an example of such a trace.

3.3 BPMN Modeling Constructs

In this subsection we will introduce BPMN modeling constructs defined on the basis of
BPMN 2.0 specification [24]. BPMN offers a wide range of modeling elements, but not
all of them are frequently employed [23]. In contrast to the existing formal BPMN se-
mantics [11, 18, 27] in this paper we consider all key BPMN constructs, which cover the
main workflow perspectives: control, resource, and data. We will restrict ourselves to private
BPMN diagrams, which are used to model internal business processes without interaction
with the environment. Modeling and discovering of interacting processes is out of the scope
of this paper and can be considered as a direction for the future work.

We iteratively introduce and formalize various types of BPMN diagrams. To show their
relations with the BPMN standard corresponding meta-models extracted from [24] enumer-
ating all BPMN diagram elements and their relations used in the context of a particular
diagram type are presented. Native classes of modeling elements and abstract classes are
shown in white and gray respectively. Classes of BPMN diagrams added in this work are
highlighted in blue. For each native BPMN class a parent package from [24] is specified.

3.3.1 Core BPMN Models

Core BPMN models are used to formalize flat processes represented by control flow per-
spective.

A meta-model, which describes elements of core BPMN models, is presented in Fig. 2.
It shows various types of flow nodes, including tasks, gateways, and events. Tasks stand
for atomic process steps, gateways are used to model routing constructions, start and end
events denote the beginning and completion of the process respectively. The nodes can be
connected via directed sequence flows independently of their type.

Graphical notations of BPMN elements used within core models are presented in Fig. 3.
Let us define core BPMN models formally. A core BPMN model is a tuple BPMNcore =
(FN, A,GXOR, GOR, GAND, estart, Eend, Ecancel, SF, λA), where

– FN is a set of flow nodes,
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– A ⊆ FN is a set of activities,3

– GXOR, GOR, GAND ⊆ FN are sets of exclusive, inclusive and parallel gateways respec-
tively,

– estart ∈ FN, Eend ⊆ FN, and Ecancel ⊆ Eend are a start event, a set of end events, and a
set of cancellation end events respectively, such that Eend\Ecancel 6= ∅,

– sets A, GXOR, GOR, GAND, {estart}, Eend form a partition of FN,
– SF ⊆ FN× FN is a set of sequence flows,
– λA ∈ A → UA, is a labeling function, which maps activities to the universe of activity

names.

UBPMNC denotes the universe of core BPMN models.

Private BPMN 

diagram

Core BPMN 

model

Task

(from 

Activities)

1

1..*

Flow node

(from 

Common)

Activity

(from 

Activities)

Exclusive 

gateway

(from 

Gateways)

1

1

Gateway

(from 

Gateways)

Inclusive 

gateway

(from 

Gateways)

1

*
Parallel 

gateway

(from 

Gateways)

1

*

Start event

(from 

Events)

End event

(from 

Events)

11

*

Event

(from 

Events)

Throw 

event

(from 

Events)

Catch 

event

(from 

Events)

Sequence 

flow

(from 

Common)

1

*

+outgoing
+incoming

* *

+sourceRef1

+targetRef1

*

Fig. 2: A meta-model for core BPMN models.
We will restrict core BPMN models to be oriented graphs with one start and multiple end

events, where the start event and end events do not have incoming and outgoing sequence
flows respectively, and each node of the graph lies on a path from the start to an end event.

Similarly to Petri nets, core BPMN models have an operational semantics based on the
model states (or markings). In each state, sequence flows (Fig. 3h) may carry tokens. In the
initial state each outgoing sequence of a start event (Fig. 3a) contains a token, while other
sequence flows do not. Each node (except start event) can be enabled and may fire.4 Activ-
ities (Fig. 3d) and exclusive gateways (Fig. 3f) are enabled if at least one of the incoming
sequence flows contains a token. When an activity fires it takes a token from one of the
incoming sequence flows and adds a token to each outgoing sequence flow. While an exclu-
sive gateway consumes a token from one of the incoming sequence flows and passes a token

3We will call "tasks" more generally "activities" in order to extend their semantics in the case of hierar-
chical BPMN models.

4Note that in order to avoid multiple firings of the start event, we assume that it can’t be enabled.
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to one of the outgoing sequence flows. A parallel gateway (Fig. 3e) is enabled only if each
of the incoming sequence flows contains at least one one token. When an enabled parallel
gateway fires, it takes a token from each incoming sequence flow and produces a token to
each outgoing sequence flow. The semantics of inclusive gateways (Fig. 3g) is non-local.

a. b. c.

e. f. g.

h.

d.

Fig. 3: Elements of core BPMN model: a.
start event, b. end event, c. cancellation end
event, d. task, e. parallel gateway, f. exclu-
sive gateway, g. inclusive gateway, h. se-
quence flow.

An inclusive gateway fires if some of the incoming
sequence flows contain tokens and it is not possi-
ble to reach a marking from the current marking,
in which currently empty incoming sequence flow
will contain tokens, without firing this gateway.
Inclusive gateway produces tokens for some of the
outgoing sequence flows.

End event (Fig. 3b) consumes all the tokens as
they arrive. Beyond ordinary end events we also
consider cancellation end events (Fig. 3c), which
terminate the entire process, consuming all the to-
kens from its sequence flows. The BPMN nota-
tion contains a wide range of event constructs, the
semantics of which involves cancellation. These
could be error, signal, cancel, and other types of
events. In this paper we combine all of them to-

gether conceptually as one type called cancel events.

3.3.2 BPMN Models with Data

In this subsection we will extend core BPMN modeling constructs by adding the data per-
spective. As Fig. 4 shows a BPMN model with data may contain data objects. Activities,
which read or write data are connected with corresponding data objects via input or output
data associations respectively. Fig. 5 shows a graphical representation of a data object and
a data association.

Also a BPMN model with data may incorporate conditional expressions. The values of
condition expression are calculated on the basis of data object values and define conditions
for passing tokens to the corresponding sequence flows.

Despite the fact that according to the meta-model (Fig. 4) default sequence flows can
be used within core BPMN models, we will add them to BPMN models with data only,
since without conditional expressions default sequence flows do not influence the model
execution.

In contrast to the BPMN specification (Fig. 4), where for any arbitrary sequence flow
a corresponding condition expression can be determined, we will assume that condition
expressions are set only for outgoing sequence flows of exclusive and inclusive gateways.

Formally, BPMN model with data is a tuple BPMNdata =
(BPMNcore,DO,DA,Expr, SFdefault), where:

– BPMNcore = (FN, A,GXOR, GOR, GAND, estart, Eend, Ecancel, SF, λA) is a core BPMN
model,

– DO is a set of data objects,
– DA ⊆ (DO×A) ∪ (A×DO) is a set of input and output data associations,
– Expr ∈ (SF ∩ ((GXOR ∪ GOR)) × FN) 9 UExpr, where UExpr is a universe of condi-

tional expressions, is a function, which defines conditional expressions for some of the
outgoing sequence flows of exclusive and inclusive gateways,
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*

1 1

*
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Fig. 4: A meta-model for BPMN models with data.

– SFdefault ∈ (GXOR∪GOR → FN) is a function, which sets default sequence flows mapping
each exclusive or inclusive gateway g ∈ (GXOR ∪ GOR) to its outgoing sequence flow
(g, n) ∈ SF, n ∈ FN.

By UBPMND we will denote the universe of BPMN models with data. Function Dcore :
UBPMND → UBPMNC defines the underlying core BPMN model for each BPMN model with
data.

Fig. 5: Data object,
data association.

An exclusive gateway passes a token to one of the outgoing se-
quence flows, for which condition expression is not defined or eval-
uates to true. Inclusive gateway produces tokens for all outgoing se-
quence flows, those conditional expression are not defined or true.
If conditional expressions of all outgoing sequence flows evaluate to
false, then a token is added to a default sequence flow of the exclu-
sive or inclusive gateway.

3.3.3 BPMN Models with Resources

Resource is a business entity, which executes or is responsible for business process activities.
These could be programs, human beings, departments, or even organizations. Usually, in
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private BPMN models resources are represented as lanes.5 An example of a BPMN model
with lanes is presented in Fig. 6.

L
a
n
e
2

L
a
n
e
1

A

B

Fig. 6: An example of a BPMN model with lanes.

A meta-model for BPMN models with
resources is shown in Fig. 7. As one may
see from this meta-model, each lane be-
longs to a lane set, which in turn can be
contained by a lane. Here we will con-
sider only one level of granularity. Lanes
may contain flow nodes, such as activities,
gateways, events. Note that sequence flows
may cross lane’s boundaries.

Core BPMN 
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BPMN model 

with resources

Lane set

(from 

Process)

1

1

Lane

(from 
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0..1

+parentLane

0..1

+childLaneSet
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1 +laneSet

*

Flow node 

(from 

Common)

* +lanes

+flowNodesRefs

Fig. 7: A meta-model for BPMN models with re-
sources.

Now let us give a formal definition
of BPMN models with resources, which
incorporates a set of lanes and a mapping
function.

BPMN model with resources is a
tuple BPMNres = (BPMNcore,Lanes,
map), where

– BPMNcore = (FN, A,GXOR, GOR,

GAND, estart, Eend, Ecancel, SF, λA) is
a core BPMN model,

– Lanes is a set of lanes representing
resources,

– map : FN 9 Lanes is a partial func-
tion which maps some of the nodes
onto set of lanes.

UBPMNR denotes the universe of BPMN models with resources, function Rcore :
UBPMNR → UBPMNC specifies underlying core BPMN models for BPMN models with re-
sources.

3.3.4 Hierarchical BPMN Models

A hierarchical BPMN model represents a nested structure of a process by adding subpro-
cesses and intermediate cancellation events (Fig. 8).

As it follows from Fig. 8 a subprocess is an activity, which considered as a container
with inner flow nodes, such as start/end events, tasks, inner subprocesses and gateways.
Thus, subprocesses can be represented as core BPMN models.

The behavior of hierarchical BPMN models builds on the behavior of core BPMN mod-
els and extends their semantics in execution of non-task activities, i.e., subprocesses.

Each subprocess can be activated if and only if one of the incoming sequence flows
contains a token and there are no tokens inside the subprocess and its child subprocesses.
An activated subprocess consumes a token from an incoming sequence flow and produces a
token to each outgoing sequence flow of the inner start event. If the subprocess terminates
normally (all tokens were consumed by non-cancellation end events), then a token is passed
to each regular outgoing sequence flow. In case a cancellation end event terminates the

5Despite the fact that an assignment of lanes is not strictly defined in the BPMN 2.0 specification, most
frequently they are used to model resources.
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Fig. 8: A meta-model for hierarchical BPMN models.

subprocess, then a control is passed to an outgoing sequence flow marked by a corresponding
boundary event. We will assume that boundary events are attached to subprocesses only.
Namely, we will not consider boundary events attached to tasks.

An example of a subprocess is presented in Fig. 9. The end cancellation event and the
corresponding boundary event are marked with an additional “x” sign.

D

C

B

A

Fig. 9: An example of a BPMN model with subprocesses.

Now let us define hierarchical models formally. A hierarchical BPMN model is a tuple:
BPMNh = (BPMNSubProc,BPMN0, H, ref, cancel), where

– BPMNSubProc = {BPMN1, ...,BPMNm}6 is a set of subprocesses, presented by core
BPMN models,

6Let A = A0 ∪A1 ∪ ...∪Am, SF = SF0 ∪ SF1 ∪ ...∪ SFm, and Ecancel = Ecancel0 ∪Ecancel1 ∪ ...∪
Ecancelm , where A0, A1,..., Am, SF0,SF1,..., SFm, and Ecancel0 ,Ecancel1 ,..., Ecancelm are sets of activities,
sequence flows, and cancellation events of core models BPMN0,BPMN1,...,BPMNm respectively. Note that
these sets are assumed to be mutually disjoint.
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– BPMN0 is a core BPMN model, which represents the root process model, such that
BPMN0 /∈ BPMNSubProc,

– H : BPMNSubProc×(BPMNSubProc∪{BPMN0}) is a tree relation, which specifies a parent
model for each model from BPMNSubProc, where BPMN0 acts as a root of this tree,

– ref : A 9 BPMNSubProc, is an injective function, such that ∀i ∈ 0,m∀j ∈ 1,m the
following condition: ∃a ∈ Ai : ref(a) = BPMNj iff (BPMNj ,BPMNi) ∈ H , holds,

– cancel : Ecancel → SF is an injective function, which maps cancellation end events of
each BPMNchild ∈ BPMNSubProc to outgoing sequence flows of activity a marked by
corresponding boundary events, where ref(a) = BPMNchild.

3.3.5 Integrated BPMN Models

Since the aim of this work is to discover integrated BPMN models, consisting of various
perspectives (Fig. 10), we provide the following definition.

An integrated BPMN model is a tuple BPMNi = (BPMNh,FD,FR), where

– BPMNh = (BPMNSubProc,BPMN0, H, ref, cancel) is a hierarchical BPMN model,
– FD ∈ (BPMNSubProc ∪ {BPMN0}) 9 UBPMND is a function, which maps core BPMN

models to BPMN models with data, such that if FD(BPMNcore) = BPMNdata, then
Dcore(BPMNdata) = BPMNcore, i.e., BPMNdata extends BPMNcore,

– FR ∈ (BPMNSubProc∪{BPMN0}) 9 UBPMNR maps core BPMN models to BPMN mod-
els with resources, if FR(BPMNcore) = BPMNres, then Rcore(BPMNres) = BPMNcore,
i.e., BPMNres incorporates BPMNcore and extends it with resources.

Core BPMN 

model

Hierarchical 

BPMN model

BPMN model 

with resources

BPMN model 

with data

Integrated BPMN 

model

Fig. 10: A meta-model for integrated BPMN models.

As it follows from the definition,
each core BPMN model, even if it rep-
resents a subprocess, can be extended by
both resources and data. Each lane set
may belong to a flow elements container,
which is represented by a process or a
subprocess (Fig. 8). That means, each
lane set may be contained by a subpro-
cess or a process itself. That also holds
for data, since (according to the BPMN
specification) each subprocess may have
its own variables.

4 A Framework for Discovering Integrated BPMN Models

4.1 Transforming Flat Process Models to BPMN

Flat process models, such as Petri nets, causal nets and process trees can be obtained from
event logs by using existing process discovery techniques.

In this subsection approaches for the transformation of flat process models to BPMN,
used as a basis for the discovering technique presented in this paper, are introduced by ex-
amples. Their detailed formal description can be found in [16]. Moreover, these approaches
were implemented as plugins [17] for ProM [13]. ProM is an open-source framework for
developing process mining algorithms.
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4.1.1 Converting labeled Petri nets

register

book 

flight

pay
book 

hotel

rent

car

Fig. 11: A labeled Petri net of a booking process.

As an example consider the labeled Petri
net which models a simple booking pro-
cess in Fig. 11. In this process people use
an information system to register, book
a flight, a hotel, rent a car, and pay. La-
beled transitions represent actions, while
transition highlighted in black are invisi-
ble.

According to the Petri net semantics,
users can perform booking actions in any
order, moreover, they can skip some of
the actions (in that case the correspond-

ing invisible transition is fired).
This labeled Petri net can be automatically transformed to a BPMN model (Fig. 12),

represented by core elements only, using the existing transformation algorithm [16]. This
algorithm converts a labeled Petri net PN = (P, T, F,Minit,Mfinal, l) to a core BPMN model
BPMNcore = (FN, A,GXOR, GOR, GAND, estart, Eend, Ecancel, SF, λA) in such a way that for
each visible transition t ∈ T exists one and only one activity a ∈ A with the same label, i.e.,
l(t) = λA(a). It was proven [16] that the target core BPMN model has the same behavior
as the initial labeled Peri net. Moreover, the target BPMN model is a connected graph with
nodes lying on paths from the start event to an end event.

The resulting core BPMN model (Fig. 12) complies with the meta-model presented in
Fig. 2. It contains activities, start/end events, exclusive and parallel gateways, and sequence
flows. Note that sequence flows can connect arbitrary flow nodes, thus, invisible transitions
do not need to be added as activities to Fig. 12 because of the explicit gateways.

start

event

Parallel

gateway

Exclusive

gateway

Exclusive

gateway

Exclusive

gateway

book hotel

register book flight

rent car

Exclusive

gateway

Exclusive

gateway

Exclusive

gateway

Parallel

gateway

pay

end

event

Fig. 12: A BPMN model constructed from the labeled Petri net presented in Fig. 11.

4.1.2 Converting causal nets

Now let us consider an example of a causal net (Fig. 13), which models the booking pro-
cess. Causal nets are represented by activities and their input and output bindings, which
stand for pre- and post-conditions of these activities. In this particular example, activ-
ity register can be followed by any combination of the booking activities from the set
{book flight, book hotel, rent car}. In other words activity register can be followed by all
of the booking activities, or just two of them, or only one of booking activities. Similarly,
any combination of the booking activities precede the pay activity.
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register

book 

flight

book 

hotel
pay

rent 

car

Fig. 13: A causal net, which models the booking process.

Each activity of a
causal net can be trans-
formed to a corresponding
BPMN activity.

Exclusive and parallel
gateways can be used to
model bindings. If an ac-
tivity has several input or
output bindings a corre-
sponding exclusive gate-
way is added. Parallel gate-
ways are used model bind-

ings consisting of multiple elements. In contrast to exclusive and parallel gateways inclusive
gateways compactly represent bindings within BPMN models.

The causal net presented in Fig. 13 can be transformed to a BPMN model with inclusive
gateways (Fig. 14), which naturally model overlapping input and output bindings.

start

event

Inclusive

gateway

book hotel

register book flight

rent car

Inclusivel

gateway

pay

end

event

Fig. 14: A BPMN model with inclusive gateways constructed form the causal net presented in Fig. 13.

4.1.3 Converting process trees

register pay

book 

flight

book 

hotel

rent 

car

Fig. 15: Process of a booking
process.

Process trees (Fig. 15) are yet another formalism for
process modeling. They are often obtained as a result
of applying process discovery algorithms (e.g. Inductive
miner [19] or Genetic miner [6]). They were proposed
in [19] and defined as directed trees with root, branch
and leaf nodes. Each branch node is considered to be
an operator node, leaf nodes stand for atomic activities,
while a root node denotes an entire process model.

Process tree is defined inductively:

– a ∈ UA ∪ {τ} is a process tree, representing an
atomic activity (τ denotes the silent activity);

– Let M1,...Mn, where n ≥ 1 be process trees, and
⊕

be a process tree operator, then
⊕

(M1, ...Mn) is a
process tree.

There can the following types of process tree opera-
tors:×denotes the exclusive choice between one of the subtrees,→ is a sequential execu-
tion of all subtrees, " means the structured loop, where M1 is a loop body and M2, ...,Mn

are alternative loop back paths (n ≥ 2),∧ denotes parallel execution of all subtrees.
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An example of a process tree shown in Fig. 15 is inductively converted to a labeled Petri
net presented earlier in Fig. 11. Note that any process tree can be converted to a correspond-
ing Petri net, while the opposite is not always true, since there is no guarantee that a given
Petri net is structured.

4.2 Converting Petri Nets with Data to BPMN Models with Data

In this subsection we will introduce an approach for transforming Petri nets with data to data
BPMN models. Note that this approach can be extended to other process models, such as
causal nets and process trees enhanced with data.

Fig. 16: Conversion of data objects, data associations and guards.

Suppose that DPN = (PN, V, U,R,W,G) is an initial Petri net with data. In order to
transform this model to a target BPMN model with data BPMNdata = (BPMNcore,DO,DA,
Expr, SFdefault), where BPMNcore = (FN, A,GXOR, GOR, GAND, estart, Eend, Ecancel, SF, λA),
the following steps are to be performed:

1. labeled Petri net PN = (P, T, F,Minit,Mfinal, l) is converted to a core BPMN model
BPMNcore, using the algorithm described in [16] (without removing activities, which
correspond to invisible transitions); by MA : T → A, we denote a function, which maps
transitions to activities;

2. for each variable from V a data object do is created and added to the target BPMN
model, the mapping of variables to data objects is defined as a function MD : V → DO;

3. for each non-invisible t ∈ T , for each v ∈ R(t), a data input association
(MD(v),MA(t)) is added to DA; similarly, for each t ∈ T , for each variable v from
W (t), a data output association (MA(t),MD(v)) is created and added to DA;

4. for each t ∈ T with a guard G(t) an expression for each incoming sequence flow of
activity MA(t) is set to G(t), if the source node of this sequence flow is an exclusive or
inclusive gateway, 7 default condition expressions are chosen in an arbitrary way;

7According to the guard mining algorithm presented in [22] guards are specified for those transitions
only, preceding places of which form decision points. Thus, these places will be transformed to exclusive
BPMN gateways using existing conversion algorithms.
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5. each activity corresponding to an invisible transition is removed from the target BPMN
diagram along with incoming and outgoing sequence flows in accordance with the sim-
plification technique presented in [16]; all outgoing sequence flows of exclusive gate-
ways added instead of removed sequence flows inherit condition expressions.

Variables, read and write functions of a data Petri net are trivially transformed to data
objects, input and output data associations respectively.

To illustrate the conversion of guards let us consider a fragment of a Petri net presented
in Fig. 16 a. and a corresponding fragment of a data BPMN model shown in Fig. 16 b. This
example shows that each guard is transformed to condition expressions of corresponding
sequence flows.

4.3 Enhancing Core BPMN Models by Adding Resource Perspective

In this subsection an approach for the enhancement of core BPMN models by adding
resources will be introduced. The enhancement algorithm takes a core BPMN model
BPMNcore = (FN, A,GXOR, GOR, GAND, estart, Eend, Ecancel, SF, λA), an event log L =
(E,Tr, act, attr) as input parameters and enhances BPMNcore with resources by specifying
map : FN 9 Lanes function, which maps tasks and other elements to lanes, producing a
BPMN model BPMNres = (BPMNcore,Lanes,map), where Lanes is a set of resources.

The algorithm is illustrated using an example.8 Let us consider a fragment of the event
log L = (E,Tr, act, attr), E = {e1, e2, e3, e4, e5, e6}, Tr = {〈e1, e2, e4〉 , 〈e3, e5, e6〉},
presented in Tab. 1. For each event a resource performing this event is specified. For ex-
ample, attr(e1)("Resource") = attr(e2)("Resource") = "John", attr(e3)("Resource") =
"Mary", etc. The initial set of resources, which perform activities is defined as: R =
∪e∈E {attr(e)("Resource")}. Thus, R = {"John","Mary","Kate","Jane"}.

Now let us consider a core BPMN model discovered from this log (Fig. 17), using the
Inductive mining algorithm [20] and the Petri net to BPMN conversion technique presented
in Section 4.1.

receive

application

send

acknowledgment

of receipt

process

application

forward to

competent

authority

t2t1

t3

t4

Fig. 17: A core BPMN model without lanes.

The approach we apply for the further model enhancement [8] assigns each task of
a BPMN model to an aggregate resource (lane), while corresponding events in a log
may be associated with different resources. First, we consider pairs of source and tar-
get tasks, which are connected via sequence flow (with possible intermediate gateways),
such that for at least one of them t ∈ A exists a corresponding event e ∈ E, for which

8For the detailed description of the approach please refer to [8].
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act(e) = λA(t) and attr(e)("Resource") is defined.9 In our example these pairs are:
(t1, t2), (t2, t3), (t2, t4). Then for each such a pair we define degree of no handover:wtitj =

|Utiti→tj
(L) ∩ Utjti→tj

(L)|+|σ=(Uti→tj (L))|

|Utiti→tj
(L)|+|Utjti→tj

(L)|
, where Utiti→tj

(L) is a multiset over R, such

that r ∈ R belongs to it n number of times, where n = |{ei ∈ E|∃tr ∈ Tr, ∃ej ∈ E,∃α, β ∈
E∗ : tr = α·〈ei〉·〈ej〉·β∧act(ei) = λA(ti)∧act(ej) = λA(tj)∧attr(ei)("Resource") = r}|,
i.e., it specifies the number of times task ti followed by tj will be executed by resource r.
Similarly, Utjti→tj

(L) defines the number of times task tj preceded by ti will be executed
by resource r, and σ=(Uti→tj (L)) specifies the number of times tasks ti and tj , where tj is
preceded by ti, are both executed by resource r.

Thus, wt1t2 = 1, wt2t3 = 0, and wt2t4 = 0, hence handover will be defined only for
pairs (t2, t3), (t2, t4). The resulting BPMN model with resources is presented in Fig. 18.

receive
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acknowledgment
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application
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competent
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t2t1
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t4

Fig. 18: Enhancing a core BPMN model by adding lanes.

If the degree of no handover is not zero or one, decision on whether to add new lanes
depends on a predefined threshold value. In the second step of the algorithm [8] lanes with
a high degree of common resources are merged. In our example lanes will not be merged,
since they do not share any resources. And finally all nodes of other types (gateways, events)
are attached to one of the resources of "neighbor" activities.

4.4 Constructing BPMN Models with Subprocesses

Subprocesses can be used to create a process model that has a hierarchical structure. This
subsection presents an approach for constructing hierarchical BPMN models with subpro-
cesses using the localized logs process discovery technique proposed earlier in [4]. Each
event in the event log can be assigned to a so-called region. As it will be shown later in Sec-
tion 6 such event logs can be found in many application domains. Moreover, if there is no

9We will assume that all the tasks are uniquely labeled, and thus, there is an unambiguous correspondence
between tasks and events.
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Fig. 19: Localized event log of a booking process. Regions r1, r2, and r3 correspond to booking flight,
booking hotel, and cancellation procedures respectively.

information on events’ localization, then in most of the cases an event log can be enriched
with additional data on a basis of expert knowledge.

Now let us give a definition of a localized event log [4]. A localized event log is a
triplet LL = (L,R, loc), where L = (E,Tr, act, attr) is an event log, R is a set of regions
(or localizations), and loc : E → PNE(R).10 We will consider only stable localized event
logs. A localized event log LL = (L,R, loc) with L = (E,Tr, act, attr) is called stable iff
∀e1, e2 ∈ E, such that act(e1) = act(e2), holds loc(e1) = loc(e2).

An example of a localized event log is presented in Fig. 19. This localized event log
contains four traces and three regions. Events with names "select flight", "book flight" and
"select hotel", "book hotel" belong to regions r1 and r2 corresponding to the booking flight
and booking hotel procedures respectively. Events named "register", "pay" are attached to
both regions r1 and r2, since these events correspond to both booking procedures. Events
labeled by "cancel flight" and "cancel hotel" belong to a specific booking region (r1 or r2
respectively) and a cancellation region r3, while event with the name "cancel" belongs to
the cancellation region only.

The localized logs discovery approach performs a construction of a target labeled
Petri net from a localized event log LL = (L,R, loc), R = {r1, ..., rk}, where L =
(E,Tr, act, attr), in three steps:

1. For each region ri ∈ R a labeled Petri net PNi = (Pi, Ti, Fi, li,Miniti ,Mfinali) is dis-
covered from a projection of the log L↑Ei

= (E↑Ei
,Tr↑Ei

, act↑Ei
, attr↑Ei

) on a set of
events Ei = {e ∈ E|loc(e) ∈ ri}, using one of the existing process discovery tech-
niques in such a way that ∀t1, t2 ∈ Tr if li(t1) = li(t2), then t1 = t2, i.e., all transitions
are uniquely labeled11;

2. A resulting labeled Petri net PNU = (P, T, F, l,Minit,Mfinal) is defined as a union of all
discovered labeled Petri nets PN1, ...,PNk, where transitions with the same labels are
merged;

10PNE(X) defines a set of non-empty subsets of X .
11Note that most of the discovery methods allow for constructing such models
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3. All structurally redundant hanging places and redundant arcs leading to hanging places
are removed.

For the description of the localized logs discovery algorithm please refer to [4].
A labeled Petri net constructed from the localized event log (Fig. 19) on the basis of the

Inductive mining approach [20] is shown in Fig. 20. All transitions are highlighted in the
colors of regions they belong to (if a transition belongs to several regions it is highlighted in
several colors).
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Fig. 20: A labeled Petri net constructed from the localized event log presented in Fig. 19.

After the labeled Petri net is constructed, it is transformed into a core BPMN model us-
ing algorithms presented in [16]. Then the core BPMN is converted to a hierarchical BPMN
model. For that aim groups af activities corresponding to the same region are identified, and
for each such a group dominating and postdominating activities are found (for the formal
definitions and an algorithm for finding these activities please refer to [21]). Having domi-
nating and postdominating activities it is verified whether these activities can serve as star
and end subprocess’s points (it is checked that the subprocess either contains all the activ-
ities solely belonging to a region or do not contain any of them, i.e., subprocesses do not
intersect and can be only nested into each other). Also it is verified that the subprocess has
only one start activity and if there are multiple end activities it is additionally checked that all
of them except one correspond to the events marked with a special cancellation attribute. In
our example we will assume that the events named "cancel" are marked with a cancellation
attribute.

The result of applying conversions and subprocesses identification techniques to the
Petri net (Fig 20) is shown in Fig. 21. This hierarchical BPMN model contains one subpro-

register

select flight

select hotel

book flight

cancel flight

cancel hotel

book hotel

pay

cancel

Fig. 21: A hierarchical BPMN model constructed from the labeled Petri net presented in Fig. 20.
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cess, which incorporates all the activities solely belonging to r1 and r2 regions, while the
"cancel" activity, solely belonging to the region r3, is outside of its boundaries. The subpro-
cess has one start point represented by the "register" activity and two end points represented
by the "pay" and "cancel" activities. Since the corresponding events of the "cancel" activity
are marked with a cancellation attribute the subprocess is connected with the "cancel" ac-
tivity via an intermediate cancellation event attached to its boundary. Activation of the end
cancellation event leads to the termination of the subprocess (all the tokens are removed)
and yields a token to the outgoing sequence flow marked with the intermediate cancellation
event. If the subprocess terminates normally (all the tokens are consumed by the normal end
event), a token is passed to the regular outgoing sequence flow, activating the "pay" activity.

In contrast to the initial Petri net (Fig. 20), where the traces with cancellations can’t be
replayed (assuming that [p9] is the final state), this hierarchical BPMN model accepts all
the log traces (all the tokens are consumed by the end events). In case one of the booking
procedures completes successfully, while the other is canceled, the entire BPMN subprocess
will be canceled as well. Moreover, in the hierarchical BPMN model no booking can be
performed after the cancellation, while in the labeled Petri net a booking transition can
fire after the other booking procedure was canceled. Thus, the hierarchical BPMN model
(Fig. 21) describes the booking process accurately than the corresponding Petri net (Fig. 20).

To show the importance of the regions selection we will consider an event log of the
same booking process with differently chosen regions (Fig. 22). Note that this event log
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Fig. 22: Localized event log of a booking process. Regions r1 and r2 correspond to booking flight and
booking hotel procedures respectively.

in contrast to the previous one (Fig. 19) does not contain specific cancellation events, and
cancellations are represented by an aggregate cancellation event only. Also note that both
localized event logs can be easily constructed one from another during the preprocessing. A
Petri net discovered from this event log using the localized logs approach [4] on the basis of
the Inductive miner technique [20] is presented in Fig. 23.

This labeled Petri net can replay any trace from the event log (Fig. 22), assuming that
[p1] and [p8] are the initial and the final markings of this Petri net respectively. In [4] it was
proven that: if for each region ri ∈ R trace t↑Ei

can be replayed in PNi, then trace t can be
replayed by the entire model PNU . That is holds for the labeled Petri net (Fig. 23), since for
each region ri ∈ R every trace t↑Ei

can be replayed on a corresponding labeled Petri net
PNi.
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Fig. 23: A labeled Petri net constructed from the localized event log presented in Fig. 22.

A hierarchical BPMN model constructed from the labeled Petri (Fig. 23) is shown in
Fig. 24. Again we assume that events named "cancel" are marked with a cancellation at-
tribute. This BPMN model contains two booking subprocesses with unique start and two
final activities, one of which corresponds to the events marked with a cancellation attribute.
The BPMN model accepts all the traces of the localized event log (all tokens are consumed
by the end event). At the same time in contrast to the initial labeled Petri net (Fig. 23) this
model may reach a so-called dead state, in which no node is enabled, while some sequence
flows contain tokens. This can happen if one of the subprocesses is canceled, while the other
finished its execution in a regular way. Hence taking this localized event log (Fig. 22) as a
starting point the labeled Petri net (Fig. 23) is more preferable as a model for the booking
process description than the corresponding hierarchical BPMN model (Fig. 24).

register
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pay

cancel

\

select

hotel
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Fig. 24: A hierarchical BPMN model constructed from the labeled Petri net presented in Fig. 23.

Thus, considering these two examples of localized event logs and corresponding pro-
cess models, one may conclude that characteristics of synthesized labeled Petri nets and
hierarchical BPMN models dramatically depend on localization of events.

4.5 Integrated Discovery Approach

This subsection presents an integrated discovery approach for constructing hierarchical mul-
tiperspective BPMN models. This approach incorporates all methods introduced above.
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The entire schema of the approach is presented in Fig. 25. First, a localized
event log LL is filtered and logs L1, ..., Lk corresponding to regions are extracted.

Localized 

event log LL

Filtering

Discovering Petri nets

Event log L1 Event log Lk

…

Labeled Petri 

net PN1

... ...
Labeled Petri 

net PNk

Replaying event logs

…

 Labeled Petri net PN1

Replay result R1

... ...

Merging Petri nets

and replay results

 Petri net with 

data DPN

BPMN model with data 

BPMNdata

Integrated BPMN 

model (with data) 

BPMN'i 

 Core BPMN 

model BPMN1

 Core BPMN 

model BPMNm

Integrated BPMN 

model (with data and 

resources) BPMNi 

 Labeled Petri net PNk 

Replay result Rk

Labeled Petri 

net PN
Replay result R

Discovering Petri net 

with data

Convert to BPMN

Construct subprocesses

Discover roles

Fig. 25: The integrated discovery approach presented
in this paper

After that labeled Petri nets
PN1, ...,PNk are discovered from
these event logs using one of the existing
discovery techniques.

Then each event log Li is replayed
on a corresponding labeled Petri net
PNi and an alignment Ri (a sequence
of replay steps, including synchronous
log and model moves, log only and
model only moves) is constructed. These
labeled Petri nets and alignments are
merged to a unified Petri net PN and
a corresponding alignment R using the
techniques presented in [4] and [26] cor-
respondingly.

Next a method for enriching Petri
nets with data recorded in the event logs
using a corresponding alignment [22] is
applied, and as a result a Petri net with
data, i.e., DPN, is obtained.

Then the Petri net with data is
converted to a BPMN model with
data BPMNdata using existing conversion
techniques introduced above and thor-
oughly presented in [16, 17].

On the basis of localization infor-
mation contained in the initial event
log subprocesses are constructed within
BPMNdata using Algorithm 1 described
above. Although the procedure of con-
structing subprocesses is defined for core
BPMN models, BPMN models with data
can also be transformed to integrated
BPMN models with subprocesses and
data perspective. In that case common
data variables are duplicated.

The resulting integrated model
BPMN′i = (BPMNh,FD,F ′R) is
represented by a hierarchical BPMN
model BPMNh, which in its turn con-
tains a set of core BPMN models:
BPMN0,BPMN1,...,BPMNm. Function
FD defines a data perspective for each
of these models.

After that the core BPMN models
are enriched with resources on the basis of information presented in the correspond-
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ing event logs. The target integrated BPMN model can be represented as BPMNi =
(BPMNh,FD,FR), where function FR defines a resource perspective of the core BPMN
models.

Note that log partitioning allows to dramatically reduce the total time computational
complexity. Log partitioning works especially well for the algorithms of enriching Petri nets
with data, since they involve replay techniques, which are known to be time consuming for
large models and logs. Moreover, discovery of models from the real-life event logs presented
in Section 6 cannot be performed in any reasonable amount of time without log partitioning.

5 Tool Support

The tool called MultiPerspectiveMiner12 was developed as a plugin for ProM (Process min-
ing) framework [13] – an open source extensible platform, widely used for the analysis of
event logs. The MultiPerspectiveMiner implements the integrated discovery approach and
functionally depends on other mining and analysis plugins called during the integrated dis-
covery.

Figure 26 shows screenshots of mining parameters selection. Thus, in Fig. 26(a) the
selection of process modeling perspectives is presented. Besides the control flow perspec-
tive, which is mandatory for mining, the user can choose data, resources perspectives or
both of them. Fig. 26(b) shows configuration types. In case the user chooses Simple con-
figuration, the Inductive miner [20] will be selected as an underlying control flow mining
algorithm. In advanced configuration the user can choose from a variety of control flow min-
ing algorithms. For mining process models with subprocesses the user is to select advanced
configuration with localization.

Fig. 26: Parameters of the Multiperspective Miner

6 Case Studies

In this section we evaluate of the integrated discovery approach presented in the earlier sec-
tions. First, we show that our discovery approach can assist in extracting in-depth knowledge
from real-life event logs and represent them in terms of convenient BPMN models. Then be-
havioral and structural characteristics of BPMN models discovered from the real-life event
logs are obtained. Finally, using these structural characteristics the discovered BPMN mod-
els are compared to the manually created BPMN models from the Signavio model collection.

12See https://svn.win.tue.nl/repos/prom/Packages/MultiPerspectiveMiner/
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6.1 Discovering Multiperspective BPMN Models

6.1.1 Discovering Municipal Processes

First we took event logs from building permit administrative processes of five Dutch munic-
ipalities [12] (containing 1199, 832, 1409, 1053, and 1156 traces respectively) and analyzed
them. These event logs contain information on processes managed by an information system
and performed by human resources. A fragment of one of the event logs after preprocessing
is shown in Table 2. Each row represents an event occurrence and contains a case id, an ac-
tivity name, a timestamp, a resource identifier, a subprocess name (derived from an original
event code), and a value of additional question parameter.

Case ID Activity Name Timestamp Resource ID Subprocess Question
name

5772892 application received 2012-09-04 560912 HOOFD EMPTY
T13:12:34

5772892 send confirmation 2012-09-04 560912 HOOFD true
T13:12:36

5772892 enter date acknowledgment 2012-09-04 560912 HOOFD EMPTY
T13:16:20

5772892 forward to the competent 2012-09-04 560912 DRZ false
authority T13:16:24

5772892 start regular procedure 2012-09-04 560912 BPT true
without MER T13:16:24

... ... ... ... ... ...
5772892 publish document 2012-10-23 560890 HOOFD true

T15:48:36

Table 2: Event log of a Dutch municipality processes.

This fragment of the log describes one case of the building permit process. First, re-
source 560912 receives an application, then sends a confirmation of receipt and enters a date
of acknowledgment (all these activities are performed within the main subprocess HOOFD),
after that within DRZ subprocess resource 560912 decides not forward the application to the
competent authority (note that the value of ’question’ parameter is set to false), and finally he
or she starts a regular procedure of application processing without MER (assessment of the
impact on the environment) within BPT subprocess. After several steps of the application
processing another resource 560890 publishes a document with a final decision.

The result of applying the integrated discovery approach to one of the event logs is
presented in Fig. 27.

The resulting BPMN model describes building permit process and contains 13 subpro-
cesses with control flow obtained on the basis of the Inductive miner [20] using Subprocess
attribute as a localization information for [4] approach. The data and resource perspectives
were discovered by [22] and [8] algorithms respectively. Constructing resources within
subprocesses allowed to build a more detailed diagram and significantly reduce time costs
for the resource discovery. Moreover, the division of the model into subprocesses made it
possible to apply the data perspective mining [22] (which relies on the model and log align-
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Fig. 27: An entire BPMN model obtained by the integrated discovery approach from the Dutch municipal-
ity event log. All the fragments of subprocesses described later in this section are marked with boxes of
corresponding colors.

ment and thus known to be possibly time consuming as logs and models get bigger), using
the divide and conquer approach [2].

Now let us consider the discovered BPMN model in details. A fragment of the BPT
subprocess is presented in Fig. 28.

Fig. 28: A fragment of the BPT subprocess

As it follows from the diagram the decision whether or not to process the application
with MER (assessment of the impact on the environment) depends on the value of the ques-
tion data variable. This dependency was automatically discovered and represented within a
diagram. According to the log (Tab. 2) that choice is made (the variable assigned a value)
in the previous process step, when the performer decides if the application should be for-
warded to the competent authority. The other exclusive choice gateway (Fig. 28) has a guard
depending on the value of the question data variable as well. Cases are being split according
to the type (Regular or not) of the application processing procedure. Note, that just like in
the previous case the value of the variable is defined in the preceding step (here it is defined
by activities regular procedure task).

Another fragment of the diagram, containing OPS subprocess, is presented in Fig. 29. It
illustrates the applicability of the resource discovery approach. Subprocess OPS describes a
procedure of suspending the application and is performed by two roles. As it follows from
the diagram, Role 2 is responsible for technical processing steps, such as registration of
suspending, finding a reason for suspending and forwarding the application to the competent
authority. While Role 1 is a role of a competent authority, who defines terms.
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Fig. 29: A fragment of the OPS subprocess

Figure 30 presents a fragment of EIND subprocess, constructed in case the event log
was enriched with additional cancel attributes.13 This subprocess describes the termination
procedure. If the result of terminate on request task execution is true (it was decided to
terminate the entire process), then the cancellation occurs and a token is produced to an out-
going sequence flow marked with a corresponding boundary cancellation event, leading to
the final process task. Whereas it was decided not to terminate the entire process, subprocess
EIND terminates normally and a token is produced to an ordinary outgoing sequence flow
of the subprocess, resuming execution of the entire process.

Fig. 30: A subprocess with a cancellation event

6.1.2 Discovering a Booking Process

A real-life event log of a ticketing system was analyzed as well. This log contains 774 traces
and describes the behavior of a web-based system used for searching and booking flights.
Each trace of the log represents the user interactions with the ticketing system. The user
can buy a flight and get an insurance. For that purpose he or she needs to fill the form with
personal data, choose an insurance type, choose a type of payment, and pay.

A hierarchical BPMN diagram of the online booking process discovered from the event
log contains subprocesses describing filling personal data, registration of insurance, and
payment procedures.

13Note that in the overall diagram (Fig. 27) the fragment of this subprocess is shown without cancellation
event.
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Fig. 31: A fragment of the filling personal data subpro-
cess

A fragment of the filling personal
data subprocess is presented in Fig. 31.
The resource perspective in the dia-
gram shows that different groups of
users perform different steps within
the subprocesses. As it follows from
this diagram there are two groups of
users: the first group fills the forms in
order to buy a flight, while users from
the other group just check/uncheck the
document expiry date checkbox. The
other important observation is that the
users fill the form fields in an arbitrary
order: the parallel gateway splits the
control flow into several subflows, each
of which corresponds to a concrete filed
of the personal data form.

6.1.3 Discovering a Banking Process

Fig. 32: A fragment of the service subprocess

Another event log being analyzed is a
small (66 traces) software log of a bank-
ing information system, which consists
of three program layers (front, service,
and database) and handles user requests.
First, the user request is received by the
front layer and transmitted to the next
service layer. The service layer imple-
ments the business logics of the pro-
cess, calling the database layer methods
to store and retrieve data. Each program
layer was represented as a subprocess.
Fig. 32 shows a fragment of the service

layer, it contains an exclusive gateway with guards, identifying types of operations (types
of requests for a reference information) and passing the control to corresponding outgoing
sequence flows.

6.2 Analyzing Discovered BPMN Models

In the previous subsection we have discussed the capability of the integrated discovery ap-
proach to build relevant multiperspective BPMN diagrams from real-life event logs. Now let
us consider behavioral and structural characteristics of BPMN models discovered from the
real-life event logs.

For the experiments we have chosen 7 real-life event logs: 5 event logs of building per-
mit administrative processes of Dutch municipalities (denoted as M1-M5), an event log of a
ticketing system (TS), and an event log of a banking system (BS). These event logs are de-
scribed in the subsections 6.1.1, 6.1.2, and 6.1.3 respectively. For mining data and resource



28 A. A. Kalenkova et al.

perspectives approaches [22] and [8] were used. To discover subprocesses all the event
logs were preprocessed (the information needed for event localization was learned from the
event attributes) and then a discovery approach [4] was applied. The Inductive miner tech-
nique [20] was used as an underlying control flow discovery method. The discovered Petri
nets were converted to BPMN models using an algorithm presented in [16].

Since the aim of the work is to discover readable and convenient process models, the
analysis of their structural characteristics is meaningful. Next to these structural character-
istics we need to estimate behavior parameters of the models to evaluate their quality with
respect to the initial event logs. In order to relate initial event logs and discovered process
models, we consider three standard metrics: fitness, precision and generalization [1]. Fit-
ness shows if the model can replay a given event log. If all the traces of the log can be
replayed by a model then the value of the fitness function is 1. If there are non-fitting traces,
then corresponding alignments, represented as sequences of synchronous and asynchronous
steps performed to replay a trace on a model, are calculated and penalties are estimated
in such a way that the value of the fitness function will be decreased proportionally to the
number of asynchronous log and model moves in the alignment. The detailed description
of fitness function can be found in [3]. In this work we calculate the fitness value for each
subprocesses, using the approach presented in [26] and then take a weighted sum, where
coefficients depend on the number of times subprocesses’ traces appear in the initial event
log.

Having a fitting process model is not sufficient, because it is easy to construct a process
model that can replay any trace, but that has no relation to the log. Thus, an additional pro-
cess metric: precision is needed. The precision shows if the model does not allow too much
behavior. The generalization metric indicates whether the model is general enough. We cal-
culated precision and generalization metrics for the discovered Petri net models, replaying
the alignments. For the detailed descriptions of these metrics please refer to [5, 7]. Table 3
presents the behavioral characteristics of the models discovered from the event logs.

Log Fitness Precision Genera-
traces lization

M1 0.90 0.85 0.99
M2 0.72 0.91 0.98
M3 0.82 0.63 0.99
M4 0.66 0.75 0.99
M5 0.76 0.8 0.98
TS 0.77 0.78 0.98
BS 0.99 0.55 0.71

Table 3: Behavioral characteristics of process
models discovered from the event logs

Structural metrics of process models highly
correlate with their readability. The following
structural metrics were considered during the
analysis of the discovered models: number of
nodes (including number tasks, XOR gateways,
AND gateways, data objects, subprocesses, and
swimlanes), number of control flows, density (ra-
tio of the number of control flows to the pos-
sible maximum number of control flows), diam-
eter (the maximal shortest path from the start
node to a graph node), depth (maximal nesting of
the graph), number of child nodes for compound

nodes. As it was statistically shown in [25], the number of nodes, density, diameter, and
depth have a negative correlation with the process model understandability. Thus, we were
especially interested in these metrics. Structural metrics of the discovered process models
are presented in Table 4.
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Number of Number of Number
Log tasks, Num- swim- Number of of data

traces XOR, AND ber of lanes child nodes Density Diameter Depth objects
gateways flows and sub- and

processes guards

M1 180, 24, 60 350 13, 14 124 / 1 / 12.8 0.003 35 / 4 / 10.6 3 2, 5
M2 235, 49, 72, 2 482 11, 22 191 / 1 / 13.2 0.003 44 / 4/ 12.7 3 2, 3
M3 238, 44, 66 494 10, 22 31 / 1 / 7.7 0.003 27 / 4/ 10.5 2 2, 6
M4 265, 44, 72 504 14, 37 134 / 1 / 9.5 0.002 31 / 4 / 13.8 3 2, 5
M5 255, 44, 88 512 13, 42 177 / 1 / 9.5 0.002 35 / 4 / 12.4 3 2, 3
TS 59, 4, 20 134 6, 5 47 / 1 / 12.0 0.009 13 / 2 / 7.3 3 6, 4
BS 74, 4, 10 159 4, 4 31 / 2 / 16 0.1 11 / 2 / 7.0 3 3, 4

Table 4: Structural characteristics of process models discovered from the event logs. 14

These structural characteristics of the discovered process models were compared with
the characteristics of the BPMN models constructed manually. For that reason the existing
Sigavio collection of 4781 BPMN models from various domains was analyzed. The results
based on the Signavio collection analysis are presented in Table 5. For each parameter max-
imal, minimal and average values are specified.

Number of Number of Number
tasks, Num- swim- Number of of data

XOR, AND ber of lanes child nodes Density Diameter Depth objects
gateways flows and sub- and

processes guards

34/ 0/ 7.2, 38/ 0/ 14.6, 20/ 0/ 0.74
16/ 0/ 2, 27/ 0/ 3.4 14/ 0/ 0.5 68/ 0/ 4.4 0.87/ 0/ 0.1 25/ 1/ 8 8/ 1/ 2.7 6 /0 /0.008

14/ 0/ 0.66

Table 5: Structural characteristics of BPMN models from the Signavio model collection.14

Although the total number of elements in the discovered process models is significantly
higher that in manually created BPMN models, structural characteristics within containers
(subprocesses and swimlanes), such as diameter (only for subprocesses) and number of child
nodes, are comparable. Thus, an automatically discovered (sub)model within a subprocess
or swimlane resembles manually created model by its structural characteristics. The maxi-
mum values for the number of child nodes of the discovered BPMN models were typically
found in the main subprocesses whereas other subprocesses were comparable to the manu-
ally created models. Thus, the results of the experiments show that the proper identification
of subprocesses helps to discover readable and convenient process models fully reflecting
process behavior recorded in the event log. Moreover, the identification of subprocesses sig-
nificantly reduce the time needed for discovery. Thus, it often takes less than a minute to
discover a BPMN model from any of the real-life event logs, while construction of BPMN
models without identification of subprocesses cannot be performed in a reasonable amount
of time.

14The maximal, minimal and average values are separated by a slash, the values of metrics for different
types of elements are separated by a comma.
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7 Conclusion

In this paper we presented an approach to discover BPMN models from event logs leverag-
ing the representational bias of BPMN. The models discovered cover multiple perspectives
(next to control-flow also resources and data) and, if possible, have a meaningful hierar-
chy to improve their readability. The approach was implemented in ProM and resulted in a
plug-in where multi-perspective hierarchical process models can be learned in a single step.

The overall approach can be summarized as follows. First the event log is split into
smaller event logs. As demonstrated it is often possible to exploit domain knowledge, event
and case attributes to create localized event logs. A labeled Petri net is learned per sublog
and the projected log is replayed on these individual generally much smaller labeled Petri
nets. Through replay we can add information on input and output data and we can even learn
guards. The resulting data Petri net can be converted to a BPMN model and also resource
information can be added. This results in a hierarchical BPMN model that integrates the
different perspectives.

The work was tested on several real-life event logs. The results were evaluated using
various metrics and compared with a collection of standard BPMN models. The results
indicate that the models are of good quality and definitely better than models obtained using
an approach that does not consider hierarchy. An added bonus is that the splitting of the logs
also improves performance.

This paper consolidates various lines of research done earlier. However, the different
results were never integrated and important steps were missing to go from an event log
to a multi-perspective hierarchical BPMN model. Note that wherever possible we made
the approach pluggable. For example, one can use any discovery technique to discover the
control-flow of the subprocesses.

Future work aims at finding structural differences between discovered BPMN models
(as-is) and reference BPMN models (to-be) using the model comparison tool proposed ear-
lier [15].
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