
Finding Process Variants in Event Logs

Alfredo Bolt ∗, Wil M. P. van der Aalst, and Massimiliano de Leoni

Eindhoven University of Technology, The Netherlands

September 4, 2017

Abstract

The analysis of event data is particularly challenging when there is a
lot of variability. Often, there are different variants of the same process,
thus cluttering the overall representations of these processes, such as pro-
cess models. Therefore, it is important to automatically detect process
variants and support the analysis of individual variants and their com-
parison. Existing approaches can detect variants in very specific settings
(e.g., changes of control-flow over time), or do not use statistical testing to
decide whether a variant is relevant or not. In this paper, we introduce an
unsupervised and generic technique to detect significant variants in event
logs by applying existing, well-proven data mining techniques for recur-
sive partitioning driven by conditional inference over event attributes. The
discovered variants can be compared to spot differences in performance,
resource utilization, etc. The approach has been fully implemented and is
freely available as a ProM plugin. We evaluated our approach by success-
fully rediscovering deliberate performance issues injected to an artificial
dataset. Finally, we validated our approach by applying it to a real-life
event log obtained from a multinational Spanish telecommunications and
broadband company, obtaining valuable insights directly from the event
data.

1 Introduction

Every organization has to manage business processes (e.g., order to cash, appli-
cation to approval). Business processes are what companies do whenever they
deliver a service or product to a customer [1]. Business processes are not static:
They have to adapt to constant environment changes (e.g., customer preferences,
legal regulations, new competitors). Like any live species, companies (and their
business processes) also evolve according to darwinian evolution: The best to
adapt is the one that thrives. It is not uncommon for companies that the same
business process has to adapt to different contexts simultaneously, which leads

∗Corresponding Author: a.bolt@tue.nl

1



to variability in the behavior of such processes. Process variability is not only
related to the control-flow perspective (e.g., a process may skip risk assessment
steps for gold customers), but can also be related to other perspectives, such as
performance. For example, if two branches of a company execute their processes
in the same way (i.e., same control-flow) but there are huge performance dif-
ferences between the branches, it is interesting to understand and explain such
differences.

Organizations can record the execution of such business processes (including
all of their variants) using Process-Aware Information Systems (PAIS) [2]. Such
information systems record organization activities and can be used to extract
event logs. Process mining is a relatively young research discipline that is con-
cerned with discovering, monitoring, and improving real processes by extracting
knowledge from event logs [3].

Most process discovery techniques (i.e., discovering process models from
event logs) deal with process control-flow variability by combining all the ob-
served executions (i.e., cases) of a process into a single process model. This
results in what is known as spaghetti models (i.e., illegible process models).
Also, process variability can be related to performance (e.g., throughput time
of a process) or to other data attributes of events.

The process mining manifesto [4] proposes several challenges in process min-
ing, one of them being: “(C2) Dealing with complex event logs having diverse
characteristics” . One of the solutions related to this challenge is to partition
complex event logs into sub-logs in order to reduce the variability and complex-
ity. In such cases, the criteria used to partition the event log should be clear
and usable for classifying future process executions.

In this paper, we consider a process variant as a group of executions of a
process (i.e., a subset of cases of an event log) that share behavioral common-
alities in terms of control-flow, performance and/or data attributes. A formal
definition of a process variant is presented in Sec. 2.

As detailed in Section 6, several approaches for process variant detection
have been proposed in literature [5, 6, 7, 8]. However, most approaches present
at least one of the following drawbacks:

1. They focus on a single attributes (e.g, only control-flow changes over time)

2. Perform a brute-force analysis that retrieves many results that are not
relevant.

3. Require many ad-hoc analysis steps to analyze the whole process.

In this paper, we propose a technique to detect relevant process variants
in an event log using the control-flow, performance and context attributes of
events in an interactive and exploratory way, where only relevant results are
presented.

It is important to note that the type of analysis performed with our approach
can also be achieved by combining other approaches and standard data mining
techniques. However, such techniques require extensive and manual ad-hoc

2



Figure 1: Overview and steps of our approach: (1) Given an event log, a process
model is created. (2) Points of interest are identified in the process model. (3)
For each point of interest, the set of cases that reach it is partitioned into process
variants. (4) A summary of process variants is produced, where the splitting
criteria and the resulting variants are shown for each point of interest.

parametrization and configuration to achieve the same results that our approach
can obtain in a much easier way. We achieve this by leveraging on process models
to identify points of interest in the process (e.g., a given state in the process).
Then, the same variability analysis is automatically performed in each point of
interest and the summarized results for the whole process are presented to the
user as result.

Concretely, in this paper we use transition systems as process models be-
cause they have a low representational bias and because any process model (in
any notation) that has executable semantics can be translated into a transition
system.

Figure 1 illustrates the overview and steps of our approach. Note that our
technique provides, for each point of interest, a clear partitioning criteria that
allows one to easily identify and characterize process variants. The resulting
process variants can be analyzed individually, but can also be compared using
process comparison techniques such as [9]. Our approach has been implemented
and evaluated in using both synthetic data (i.e., controlled experiment with a
known ground truth) and a real case study.

The remainder of this paper is structured as follows: Section 2 introduces
notations and concepts that will be used throughout the paper. Section 3 intro-
duces our proposed approach and discusses how process variants can be obtained
from event logs with the help of process models. Section 4 describes the freely
available open-source software tool that implements our approach. Section 5
evaluates our approach through artificial experiments, and shows the usefulness
of our approach by its application in a real case study. Section 6 discusses
related work. Finally, Section 7 concludes the paper and discusses future work.

3



2 Preliminaries

In this section, we describe the basic concepts and ideas that will be used
throughout this paper, namely event logs (and its components), process variants
and transition systems.

2.1 Event Logs

Let E be the universe of events, N be the universe of attribute names and V be
the universe of possible attribute values.

Events can have values for given attributes through the function # : N →
(E 9 V). For an attribute a ∈ N , the partial function #(a) : E 9 V, denoted
as #a, can relate events to values of the attribute a. If an event e does not have
a value for a, we denote this as #a(e) =⊥

The domain of the partial function #a is denoted as dom(#a) and it repre-
sents the subset of events of E that have a value in V for the attribute a. Com-
monly used event attributes are the Event Class (denoted as #class) which is
used to define the type of event (e.g., activity name), and the Case ID (denoted
as #case) that is used to group events into cases.

Let σ ∈ E∗ be a trace. A trace records the execution of an instance of a
process and is a finite sequence of events. The kth event of a trace is denoted
as σ(k). The length of a trace is denoted as |σ|. The last event of a trace is
denoted as σ(|σ|). The prefix of a trace containing its first k events is defined
by the function pref k ⊆ E∗ → E∗. Note that pref 0(σ) = 〈〉. The set of all the

prefixes of a trace σ is defined as pref �(σ) =
⋃|σ|
k=0{pref k(σ)}.

For the sake of convenience, we introduce the partial function tc : E∗ 9
P(V) that maps traces to sets of event classes, where P represents the powerset
function. For any trace σ, tc(σ) = {#class(e)|e ∈ σ} defines the set of event
classes that are related to the events in the trace.

Let L ⊆ E∗ be an event log, i.e., a set of traces. Each event is unique
and appears only once in one trace within the event log, i.e., for any event
e ∈ E :

∣∣{(σ, i)| σ ∈ L ∧ i ∈ {1, ..., |σ|} ∧ σ(i) = e
}∣∣ ≤ 1. The set of

all the prefixes of traces of an event log L is defined as PL =
⋃
σ∈L pref �(σ).1

The set of all the events in an event log L is defined as EL =
⋃
σ∈L{e ∈ σ}.

Table 1 shows an example of an event log represented in a table format. In
this paper, we leverage on the same log augmentation techniques defined in [8]
(i.e., trace manipulation operations) to extend events and cases with obtain
additional attributes that are rarely recorded in event logs, such as the elapsed
time of an event within its case, or the next activity to be executed in a case.

Now that events, traces and event logs are defined, we can formally introduce
the concept or a process variant.

1For each trace σ, 〈〉 and σ are also considered to be a prefix of σ

4



Table 1: A fragment of an event log represented as a table: each row corresponds
to an event (shown in the event id column) and each column corresponds to an
event attribute. Events with the same trace id correspond to the same trace
(i.e. process instance).

event id trace id activity timestamp next activity elapsed time
1 1 A 28-12-2016 06:30 B 00:00
2 1 B 28-12-2016 06:45 C 00:15
3 1 C 28-12-2016 07:20 D 00:50
4 1 D 28-12-2016 08:05 - 01:35
5 2 A 29-12-2016 10:10 C 00:00
6 2 C 29-12-2016 10:30 B 00:20
7 2 B 29-12-2016 11:15 D 01:15
8 2 D 29-12-2016 12:10 - 02:00
9 3 A 30-12-2016 09:30 D 00:00
10 3 D 30-12-2016 09:40 - 00:10

Definition 1 (Process Variant) Given an event log L, let C = {#class(e)|e ∈
EL} be the set of all the event classes observed in events of L. A process variant
V ⊆ L is a subset of traces of the event log such that ∃c∈C : c ∈ tc(σ) for all
σ ∈ V .

The traces in a process variant should have at least one common event class
(e.g., activity). In this paper, we consider that traces without common activities
relate to different processes, hence they cannot belong to the same variant.

The traces in a process variant also contain similarities in other event at-
tributes. For example, a variant can be composed of traces in which an activity
B is always executed by John, or by traces that have a similar (not necessarily
equal) duration for an activity D.

Process variants also should have differences with respect to other process
variants. For example, consider a process variant containing all the traces in
which an activity B is executed by John and another process variant containing
all the traces traces in which the same activity is executed by Mary. The traces in
such process variants are similar to traces in the same variant, but are different
to traces in other process variants.

2.2 Transition Systems

The first step in our approach (step 1 in Figure 1) is to create a process model
from the event log.

Transition systems are very simple process models that are composed of
states and of transitions between them. A transition is defined by an activity
being executed, triggering the current state to move from a source to a target
state. Prefixes of traces can be mapped to states and transitions using repre-
sentation functions that define how these prefixes are interpreted.

The state representation function is defined as rs ∈ E∗ → Rs where E∗ is the
universe of possible trace prefixes and Rs is the set of possible representations
of states. This function relates trace prefixes to states in a transition system.

5



The activity representation function is defined as ra ∈ E → Ra where E
is the set of possible events and Ra is the set of possible representations of
activities (e.g. activity name or event id).

When using a state representation function rs and an activity representa-
tion function ra together, (prefixes of) traces can be related to transitions in a
transition system. The activity and the source and target states of the transi-
tion can be identified using rs and ra. The set of all possible representations of
transitions is defined as Rt ⊆ Rs × Ra × Rs. A transition t ∈ Rt is a triplet
(s1, a, s2) where s1, s2 ∈ Rs are the source and target states and a ∈ Ra is the
activity executed.

Definition 2 (Transition System) Let L ∈ E∗ be an event log, PL the set of
all the prefixes of traces of L, EL the set of all the events of L, rs a state repre-
sentation function and ra an activity representation function. A transition sys-
tem TS (rs,ra,L) is defined as a triplet (S,A, T ) where S = {s ∈ Rs | ∃σ∈PL

s =
rs(σ)} is the set of states, A = {a ∈ Ra | ∃e∈EL

a = ra(e)} is the set of activ-

ities and T = {(s1, a, s2) ∈ S × A × S | ∃σ∈PL\{〈〉} s1 = rs(pref |σ|−1(σ)) ∧ a =
ra(σ(|σ|)) ∧ s2 = rs(σ)} is the set of valid transitions between states.

Note that in this paper we only use the activity attribute to determine states
and transitions. However, other event attributes can be used instead. For
example, if a resource attribute is used in the state and activity representation
functions, the resulting transition system will be a social network where states
and transitions correspond to resources (e.g., employees) that execute events.

3 Finding Process Variants in Event Logs

There are many ways to partition an event log. The number of possible ways
to partition an event log containing n traces is given by the n-th Bell number.
As shown by Dobiński’s formula [10]: Bn = 1

e

∑∞
k=0

kn

k! , which is huge even
for smaller n. However, most of these possible partitions are irrelevant for
the analysis of a process because their resulting subgroups of traces do not
correspond to process variants (see Def. 1). We can greatly reduce this number
of partitions by leveraging on process models and event attributes.

The remainder of this section is organized as follows. Section 3.1 describes
how points of interest can be defined in a transition system using event logs and
discusses the guarantees that such points of interest provide (step 2 in Fig. 1).
Section 3.2 describes how the cases that reach a given point of interest can
be partitioned into relevant process variants by leveraging on event attributes
(step 3 in Fig. 1). Finally, Section 3.3 describes how the summary of results is
presented to the user (step 4 in Fig. 1).

3.1 Defining Points of Interest in a Transition System

The second step in our approach (step 2 in Figure 1) is to indeed identify

points of interest in the process model. Given a transition system TS (rs,ra,L) =

6



(S,A, T ), we define P ⊆ S ∪ T as the set of points of interest.

Given an event log L and a transition system TS (rs,ra,L) = (S,A, T ), every
point of interest p ∈ S ∪T can be related to a set of traces through the function
tr : (S ∪ T )→ P(L).

If a point of interest is a state, then the function tr is defined for s as
tr(s) = {σ ∈ L|∃σ′∈pref �(σ) : rs(σ′) = s}. If a point of interest is a transition t =
(s1, a, s2), then the function tr is defined as tr(s1, a, s2) = {σ ∈ L|∃σ′∈pref �(σ) :

s1 = rs(pref |σ
′|−1(σ′)) ∧ a = ra(σ′(|σ′|)) ∧ s2 = rs(σ′)}. In other words, this

function relates any state or transition with the traces that have a prefix that
can be mapped into it.

As a consequence, for any point of interest p, all the traces σ ∈ tr(p) are
guaranteed to have at least one common event class (e.g., for a transition t =
(s1, a, s2), the event class is a , which is present in all the traces that are related
to t). Trivially, the same applies for any subgroup of traces g ⊆ tr(p)

All the states and transitions of a transition system are initially considered
as points of interest. However, not all points of interest are equally relevant.
In this paper we define the relevance of a point of interest p in terms of the
percentage of traces of the log L that reach it: |tr(p)|/|L|. For example, all
the states and transitions that are reached by less than 5% of the traces in the
event log can be considered as irrelevant because they rarely happen, and can
be removed from P . In the implementation of our approach (see Sec. 4), the
threshold of relevance is defined by the user. However, other alternative notions
of relevance can be defined, and the users can arbitrarily select points of interest
from S ∪ T .

3.2 Finding Variants in a Point of Interest

The third step in our approach (step 3 in Figure 1) is to find process variants in
the points of interest defined above. We do this by using Recursive Partitioning
by Conditional Inference (RPCI) techniques [11] over event attributes. This
technique is able to split a set of instances based on dependent and independent
attributes (i.e., features, variables).

A trace cannot correspond directly to an instance because it may have several
different values for the same attribute. For example, an elapsed time attribute
can have different values for each event in the trace. In order to use RPCI (or
any other partitioning or classification technique) each instance should have a
single value for each of the attributes that will be used (or not have a value at
all).

For this purpose, we choose the attribute values of a single event of a trace to
represent it as an instance. The choice of which event should be used is related
to the definition of points of interest discussed before.

Since we know that for a given point of interest p, any trace σ ∈ tr(p) reaches
it at some point, we could simply choose the last event of the smallest prefix of σ
that reaches p. We define such set of events through the function E : P → (E∗ →
E), where for any point of interest p, E(p) relates traces to a single events that

7



represents them. For example, if the point of interest is a state s, then a trace
σ ∈ tr(s) is related to the event E(s)(σ) = σ

(
minσ′∈pref �(σ)(|σ′|

∣∣rs(σ′) = s)
)
.

Alternatively, we could choose the last event of the largest prefix that reaches
p, or any other way that ensures that a trace is represented by a single event.

By doing this, we overcome the problem of traces reaching a point of interest
more than once (e.g., in the presence of loops). This phenomenon can result in
a trace being in two process variants simultaneously, like in [8] (we discuss this
in detail in Sec. 6). For example, lets say that an activity B is executed first by
John and then by Mary in the same trace. If process variants are defined based
on who executes the activity B (i.e., John or Mary), then the trace would belong
to both process variants simultaneously. This obviously causes problems when,
for example, comparing process variants or aggregating performance.

Given a point of interest p, after the set of events that represent the traces in
tr(p) is defined as Ep =

⊎
σ∈tr(p)E(p)(σ), where every event e ∈ Ep corresponds

to an instance.

Partitioning Sets of Events:

In this paper, we rely on the event augmentation techniques proposed in [8].
Events are annotated with behavioral characteristics related to control-flow
(e.g., the next activity after the event), performance (e.g., the elapsed time
of an event within a trace) and other event attributes.

For each point of interest p, we aim to find the relevant partitions of its
corresponding set of events (i.e., instances) Ep. For the remainder of this section,
we will denote Ep as simply E. The initial number of possible partitions in a
set of events E is given by B|E|. The evaluation of all these possible partitions
is still practically unfeasible. Therefore, we leverage on the available event
attributes (defined in Section 2.1) to further reduce the number of partitions to
be evaluated.

Let E be a set of events, and A(E) = {a ∈ N|dom(#a) ∩ E 6= ∅} the set of
event attributes associated with the events in E. For each attribute a ∈ A(E),
na(E) = {#a(e)|e ∈ dom(#a) ∩ E} defines the set of values of the attribute a
over the set of events E.

We choose one of the event attributes d ∈ A(E) as our dependent attribute
(chosen by the user), for which we will reduce the variability by partitioning
any combination of the other A(E) \ {d} event attributes, namely independent
attributes.

Our approach leverages on the Recursive Partitioning by Conditional Infer-
ence (RPCI) approach [11] to partition the set of events E. RPCI provides a
unbiased selection and binary splitting mechanism by means of statistical tests
of independence between the splitting attributes and the dependent attribute.
It is based in the work of [12], which defines permutation-based independence
tests using the asymptotic properties of linear statistics derived from arbitrary
distributions. The specific independence tests used depend on the distribu-
tional characteristics of the dependent and independent attributes. The details
of how RPCI works are out of the scope of this paper, and the reader is referred

8



to [11] for the specific mechanisms that RPCI uses to deal with different types
of distributions and combinations of attributes.

In a nutshell, RCPI is described for a set of events E by the following steps:

1. Given a dependent attribute d ∈ A(E), find the independent attribute
i ∈ A(E) \ {d} with the strongest significant correlation with d.

2. If such independent attribute i does not exist (i.e., no correlation is sig-
nificant), stop the recursion. If it does exist, an optimal binary partition
of the dependent attribute d is obtained, such that E is split into E1 ⊂ E
and E2 = E \ E1.

3. Repeat step 1 and 2 for E1 and E2 recursively.

In step 1, the dependent attribute d is tested for independence w.r.t. each
independent attribute in isolation. From the independent attributes for which
the null hypothesis is rejected (i.e., they are significantly correlated to the de-
pendent attribute), we select the one with the lowest p-value, which is obtained
from the independence test. This lowest p-value indicates the strongest signifi-
cant correlation between the dependent attribute and a independent attribute.
Note that if no null hypothesis is rejected, then no splitting is done.

In step 2, if an independent attribute i is selected, an optimal binary par-
tition is searched. A set of events E can be partitioned using the independent
attribute i in different ways depending on the distribution of the attribute. For
a numerical i, a single value is chosen, which acts as a “border” between the
resulting subsets (e.g., the value 5 results in E1 = {e ∈ E|#a(e) < 5} and
E2 = {e ∈ E|#a(e) ≥ 5}). For a categorical i, a set of values is chosen, as
categories are not comparable (e.g., E1 = {e ∈ E|#a(e) ∈ {Gold, Silver}}
and E2 = {e ∈ E|#a(e) /∈ {Gold, Silver}}). Note that RPCI provides several
mechanisms to deal with missing values (see [11]).

RPCI uses the values of the independent attribute i to detect a binary parti-
tion of the set of events E into E1 ⊂ E and E2 = E \E1 such that the difference
between the value distributions of the dependent attribute d over the resulting
subsets (nd(E1) and nd(E2)) is maximized. This means that, in the worst case,
2|ni(E)|−1 − 1 possible partitions are evaluated.

Given the recursive nature of this approach, the exact total number of par-
titions to be evaluated depends on the characteristics and distributions of the
attributes, and how many splitting attributes are correlated to the dependent
attribute. If all the independent attributes are correlated to the dependent at-
tribute and are used once, the total number of partitions to be evaluated is
given by

∏
i∈A(E)\{d}(2

|ni(E)|−1 − 1), which is much smaller than B|E|. Even if
such independent attributes are used many times, the reduction of the number
of possible partitions is still considerable. Note that this is an upper bound,
because after every recursion the set of values of any independent attribute i
will tend to decrease: E1 ⊂ E ⇒ ni(E1) ⊆ ni(E).

In step 3, once an optimal partition is obtained, the whole process (steps 1
and 2) is repeated for the resulting partition E1 and for E2.

9



As a result of RPCI, a set of events E can be partitioned into a set of subsets
SE = {λ1, ..., λn}. Every subset λ ∈ SE corresponds to a set of events. RPCI
provides, for each λ ∈ SE a set of conditions that define it. These are presented
to the user to help characterize a process variant.

Given the way that E was built and the nature of events, every event in λ
is related to a different trace.

Therefore, SE = {λ1, ..., λn} can be transformed into a set of process variants
V = {v1, ..., vn} of the same size where given an point of interest p, a variant v
is defined as vi = {σ ∈ tr(p)|∃e∈λi

: e ∈ σ} for any i ∈ {1, ..., n}. Therefore, the
variants are guaranteed to be disjoint.

The approach discussed in this section is repeated for the sets of events
related to each point of interest in the transition system defined by the user.

3.3 A Summary of Process Variants

According to RPCI, the traces related to a point of interest can be split into
process variants or not, depending on the significance of the correlation between
dependent and independent attributes. We present a summary of only the points
of interest where process variants were found (see Sec. 4). For each point of
interest, the splitting criteria obtained from RPCI is clearly presented, and the
process variants are available to the user for other types of analysis.

4 Implementation

We have implemented our approach as a ProM [13] plugin named “Process
Variant Finder” included in the VariantFinder package.2 We use the R library
ctree [14] to perform the statistical tests and partitioning of the sets of events.
Therefore, a running instance of R is required. Figure 2 shows the interface of
our tool.

The user needs to, first, specify the state and activity representation func-
tions ( shown as “TS Settings”). Then, the dependent attribute, and, later, the
set of independent attributes. After several relevant process variants have been
identified in states and transitions, a summary of points of interest with process
variants is presented to the user (see panel 1 in Figure 2). When the user selects
one of these points of interest, the tool shows the transition system and high-
lights the states or transitions that correspond to it (see panel 2 in Figure 2)
and also describes the splitting criteria and value distributions of the dependent
attribute for all the variants in a tree visualization (see panel 3 in Figure 2).

Our tool works with any combination of categorical (nominal and ordinal)
and numeric (continuous and discrete) attributes. Hence, it is possible to use
combinations of control-flow, time, resources, costs, customer details, etc.

2The reader can get this package via the ProM Package Manager.

10



Figure 2: Screenshot of the “Process Variant Finder” tool in action. Panel
(1) shows a list of the points of interest where process variants were detected.
When a point of interest is selected, Panel (2) shows its location in the transition
system (highlighted in red) and Panel (3) describes the details of the splitting
criteria by visualizing it as a tree where each leaf of the tree is visualized as
the distribution of the dependent attribute (for which we want to reduce the
variability) for the subset of events that represent that variant.

5 Evaluation

Our approach was evaluated using two experiments. The first experiment is
related to an artificial event log with artificially-induced performance variability
for different resources participating in the process. For this event log, the ground
truth (i.e., which resources are slower) is known, and our approach is used to
re-discover the injected inefficiencies. The second experiment relates to a real
case study in which we applied our approach to discover sources of variability
and identify process variants among the event data of a Spanish broadband and
telecommunication company.

5.1 Rediscovering Performance Variants in Artificial Event
Data

This experiment refers to a generic order-to-payment process of a company that
sells phones. In this process, an order is placed and an invoice is sent to the

11



customer. Then, the order is paid by the customer and the order is prepared and
delivered to the customer. Finally, the payment is confirmed by the company.
Order can also be cancelled at any time.

This artificially generated event log contains 10.000 cases and 127.216 events.3

In average, each case contains 13 events. The process is executed by 31 different
resources, of which three have a much slower performance (i.e., longer time to
perform an activity) than others. These three slower resources are ironically
named “Swift”, “Speedy” and “Rush”, and they perform different sets of ac-
tivities. “Swift” participates only in the following activities: “send invoice”,
“confirm payment”, “pay”, “cancel order”. “Speedy” participates only in “pre-
pare delivery” and “place order”. “Rush” only participates in “make delivery”.

Since we know this ground truth, we want to evaluate whether our approach
is able to detect which of those resources tend to be slower than the rest, and
also pinpoint in which parts of the process does this performance difference
occurs.

Concretely, we applied our approach into this event log by choosing the
time:duration attribute (i.e., the time difference between an event and the pre-
vious one) as the dependent attribute, and org:resource (i.e., the resource that
executes an event) as the independent attribute.

We were able to identify the all the deliberately injected differences in per-
formance caused by the slow resources in specific activities. As an example,
Figure 3 shows the performance differences in the “send invoice” activity (per-
formed by “Swift” and other normal resources). Even though there are perfor-
mance differences between normal resources (by design), the resource “Swift” is
several orders of magnitude slower than all others. Note that the Split Criteria
panel also shows all the other detected differences. The user has to click on any
of them to visualize the detailed splitting conditions and highlight the parts of
the transition system involved (in red).

5.2 Discovering Process Variants in Real Event Data: A
Case Study

In this case study, we report on the results obtained by applying our approach
to an event log provided by a Spanish broadband and telecommunications com-
pany. The provided event log refers to a claim handling process related to three
services that this company provides, codenamed: Globalsim, SM2M and Jasper.
In total, the event log contains 8296 cases (i.e., claims) processed between Jan-
uary 2015 and December 2016. Each claim has, on average 5 activities. Claims
can have four severities: slight, minor, major and critical. In total, there are
40965 events in the event log.

Customers of the company create a claim which is activated by an employee
of the company when he/she starts working on it. Claims with missing infor-
mation can be delayed. If the service was interrupted, the first step is to work

3the event log is available in https://www.dropbox.com/s/pa1j4062qf78lt5/event_log_

orders_with_deliberate_performance_issues.rar?dl=0.

12



Figure 3: Example of process variants found. “Swift” is much slower that other
resources than execute the activity “send invoice”. The duration of an activity is
measured in milliseconds. The dependent attribute is the duration of activities.
The independent attribute is the resource.

on the restoration of the service. If there was no interruption, or the service
has been restored, resources work on solving the problem that caused the claim.
Once a problem has been solved, it is informed to the customer, which can close
the claim. Customers can also cancel claims at any moment.

Figure 4 illustrates this process as a transition system, in which a state is
defined by the last two activities executed in a prefix of a trace.

Note that activities such as “Active” can relate to different states depending
on the previous activity executed in such trace. For example, the state “Active,
New” represents claims that were created and then activated, whereas the state
“Active, Delayed” refers to claims that were delayed at some point and then
activated. Note that the labels of states are composed of the last activity in the
prefix followed by the previous activity.

The company has established several Service Level Agreements (SLAs). An
example is the response SLA (i.e., time until the claim becomes active). The
response SLA has different values according to the service and severity. In a
preprocessing step, we added a binary attribute “Check resp” whose value can
be (1) if the claim complied with its corresponding response SLA (depending
on the service and severity) or (0) otherwise.

We used our approach to discover process variants in all states and transi-

13



Figure 4: Transition system representing the claim handling process. States are
defined by the last two activities executed in a trace prefix. Thickness represents
frequency. States and transitions with a frequency of 5% of claims or less were
filtered out. States “Active, New” and “Closed,Solved” are highlighted.

tions of the transition system shown in Figure 4. In every state and transition,
we searched for relevant partitions using each available event attributes as a
dependent attribute.

We were able to discover several partitions in many states and transitions.
Because of space limitations, the remainder of this section discusses only a
few partitions detected in the “Active, New” and the “Closed, Solved” states
of the transition system presented in Figure 4 (highlighted in red and blue
respectively).

Figure 5 shows two relevant partitions detected in the “Active, New” state
(i.e., when a claim has been created and then activated) where the splitting
attributes and criteria are represented in a tree-fashion.

The first partition of the “Active, New” state (shown in Figure 5a) was ob-
tained by selecting the “Check resp” attribute (related to the response SLA)
described above as the dependent attribute, and using all the other attributes
as independent attributes. Therefore, the resulting variants of this partition
can be considered as context variants. From the three resulting variants of this
partition, we can observe that claims corresponding to the SM2M service (i.e.,
the right-hand branch in Figure 5a) have a very high response SLA score (i.e.,
almost all claims have “Check resp” = 1). The remaining claims are subse-
quently split depending on the time of the week in which they were activated.
Claims related to the Globalsim and Jasper services that were activated during
weekday nights (i.e., LV N) or weekend evenings (i.e., SD T) are the ones that
have the worst SLA compliance (i.e., the middle branch in Figure 5a), whereas
claims from the same services that were activated in other times of the week
had good compliance levels (i.e., the left-hand branch in Figure 5a). Domain
experts from the company related this phenomenon to the fact that only claims
related to the SM2M service are handled by the company’s employees. The
claims related to the other two services are handled by external providers. Also,
the data exchange between the providers and the company is done in batches.
This means that the external providers are not necessarily underperforming,
and a real-time data exchange system would be necessary in order to correctly
evaluate this SLA.

The second partition of the “Active, New” state (shown in Figure 5b) was
obtained by selecting the “next activity” attribute (described in Section 2.1)
as the dependent attribute, and using all the other attributes as independent

14



(a) Partition defining three context variants with differences in their
compliance with their corresponding response SLA. The dependent
attribute is the Response SLA compliance. All other attributes are
considered as independent attributes.

(b) Partition defining six Control-flow variants with differences in the next activity to
be executed. The labels in each bar chart are (from left to right): Canceled, Delayed,
Restored, Solved. The dependent attribute is the next activity to be executed. All
other attributes are considered as independent attributes.

Figure 5: Examples of partitions detected in the “Active, New” state.

attributes. Therefore, the resulting variants of this partition can be considered
as control-flow variants. On the one hand, we can observe that the claims related
to the Globalsim and Jasper services (i.e., first branch to the left in Figure 5b)
have a higher tendency to get delayed than claims related to the SM2M service.
This is accentuated in claims with a “Slight” severity. On the other hand, claims
associated to the SM2M service (i.e., first branch to the right in Figure 5b) do
not follow this pattern. From these claims, the ones that have a “Slight” severity
are more likely to be immediately solved. Domain experts related this to the
fact that slight severity claims usually do not involve an interruption of the
service (thus, no restoration) and can be immediately solved.

More severe claims are divided whether they belong to a “parent claim”
(1) or not (0). This is indicated by the “isChild” attribute (a claim can be
subdivided into smaller claims, and such child claims naturally affect the SLAs
of their parent claims). Claims that belong to a parent claim are more likely

15



Figure 6: Performance variants detected in the “Closed, Solved” state. Elapsed
time is measured in milliseconds and is presented as box plots for each variant.
The dependent attribute is Elapsed Time. All other attributes are considered
as independent attributes.

to become “restored”. This make sense because bigger or more complex claims
are more likely to have child claims, and are also more likely to have a service
interruption. Claims that do not belong to any parent claim can be split into
two main variants: the ones that take one minute or less to be activated and
those that take more than one minute.4 We can observe that the faster claims
are more likely to be solved, but the slower ones get delayed more often. This
could be related to “easier” claims being processed first.

Finally, Figure 6 shows performance variants detected in the “Close, Solved”
state (i.e., when a claim has been solved and then closed) where the splitting
attributes and criteria are represented in a tree-fashion. We can observe that
claims related to the Globalsim service have the longest throughput time (i.e.,
the time between a claim is created until it is closed), followed by claims related
to the Jasper service. Note that claims related to the S2M2 service are the
fastest to be closed in average, but the time distribution is much more spread
than claims related to the Jasper service. This can be observed on the position
of quartiles in the box plots shown in Figure 6. Domain experts explained the
fact that, in average, Globalsim claims took longer to be closed by the fact
that there was a change in the management of this service in May 2016, which
resulted, among other consequences, in the massive closeup of claims. Most of
such claims were declared as “Solved” several months before, but were never
officially closed. It is important to note that the company is only responsible
for claims until they are solved, since the closing of a claim depends on the
customer, hence it is not included in the company’s SLAs.

Finally, we evaluated the impact of some of the detected partitions on the
whole process. Note that this is not thoroughly discussed nor defined here since
the strategies to relate variants and cases are out of the scope of this paper.

460000 milliseconds = 1 minute.

16



Figure 7: Transition system showing the control-flow comparison between claims
of SM2M and claims of Globalsim and Jasper. The blue colors indicate that the
frequency of occurrences of a state or transition is significantly higher in SM2M.
Red colors indicates the opposite. Note that the structure of this transition
system is the same as in Figure 4.

However, we explored a very simple scenario to illustrate the potential gains
of combining the approach proposed in this paper with process comparison
approaches.

We analyzed some of the control-flow variants defined by the partition shown
in Figure 5b. This partition was detected in the “Active, New” state and is first
characterized by the Service to which the claim belongs to (i.e., the indepen-
dent attribute with the highest correlation to the dependent attribute). Note
that “Service” is a case-level attribute, thus all the events in a case have the
same value for this attribute. Also note that all the cases in the event log
are associated to a service (i.e., there are no missing values). Accordingly, we
split the event log into two sublogs: one with the claims that belong to the
SM2M service, and another subset with the claims of the Globalsim and Jasper
services. These two sublogs were compared in terms of control-flow frequency
using the process comparison techniques described in [9]. The results of this
comparison are illustrated in Figure 7. We can observe that, as expected, there
is a significant difference in the control-flow frequency followed by claims of the
different services. The state “Solved, Active” is colored blue, which means that
the frequency of occurrence of such state is higher in SM2M (60% of the claims)
than in Globalsim and Jasper (3% of claims). On the other hand, the state
“Delayed, Active” is colored red, which means that the frequency of occurrence
of such state is higher in Globalsim and Jasper (65% of the claims) than in
SM2M (13% of claims). Note that there is a natural cascading effect in the
red-colored states and transitions until claims are closed. In the last state of
a claim (“Close, Solved” state), even if there are differences in the frequency
of occurrence (75.8% for SM2M claims and 76.5% for Globalsim and Jasper
claims), such differences are not significant. This is reflected by the fact that
the state is not colored.

6 Related Work

Detecting process variants within an event log is not a new problem. Several
authors have contributed to solving it from different perspectives. Even though
these approaches may use different techniques, they all have a common goal:
Split an event log into smaller event logs with less variability. Note that the con-

17



Figure 8: Categories of Related Works and their variant detection capabilities.

cept of variability may relate to control-flow, performance, customer types, etc.
For example, trace clustering may be used to reduce the control-flow variabil-
ity (i.e., group traces with similar activity execution sequences) or performance
variability (i.e., group traces with a similar performance).

We grouped existing process variant detection techniques into four cate-
gories:(1) Concept drift detection, (2) Trace clustering, (3) Performance analy-
sis, and (4) Attribute Correlation. The general variant detection capabilities of
each category is illustrated in Figure 8.

Concept drift aims to detect when the relation between the input data and
the dependent variable changes over time. An extensive survey on concept drift
techniques in data mining is presented in [15]. Concept drift has been applied
in process mining by several authors (see [16, 17, 5]). Concept drift techniques
would allow one to find control-flow variability over time, which is only one of
the possible combination of attributes that our approach can use.

Trace clustering techniques [6, 18, 19] usually focus on detecting different
control-flow variants based on structural similarity. Notably, [20] uses trace
clustering to detect process changes in time, extending the detection scope from
purely control-flow to performance and context attributes as well. A downside
of trace clustering approaches in general is that they are usually quite sensitive
to parameterizations, such as the number of clusters to use. Also, the discovered
clusters are often difficult to interpret from a business perspective.

Performance analysis techniques [7] focus on detecting changes in the per-
formance of the process and characterizing them by using control-flow, perfor-
mance and context attributes. This approach could be extended to also detect
control-flow and context variants. However, it poses a scalability problem: all
the combinations of attributes are evaluated in a brute-force fashion, which
complicates its use in event logs with a high number of attributes.

Attribute Correlation techniques [8] are more general, as they aim to group
cases depending on any event attributes. The approach proposed in this paper
falls in this category. The only other approach that belongs in this category is
the one presented in [8] that focuses on classifying specific selections of events

18



by building decision or regression trees with the attributes of such events that
are later used to classify traces into process variants. Our approach is closely
related to [8]. The similarities between our approach and [8] are:

• Behavioral features are annotated into events as extra attributes via trace
manipulation functions.

• Selection of events are partitioned into subgroups using such event at-
tributes.

The differences between these approaches are that in our approach:

• Process variants are always guaranteed to be disjoint (see Sec. 3.2). This
is only guaranteed in [8] for the event filters EF2 and EF3, which select
either the first or the last event of a trace respectively.

• The required configuration is simpler than in [8]: In our approach, given
a transition system, the user only needs to select the dependent and in-
dependent attributes, and the same analysis is performed for all points of
interest. In [8] an ad-hoc analysis use case needs to be manually designed
for each point of interest.

• Our approach presents a summary of process variants in many points of
the process. In [8], the result is a single decision tree describing variants
in a single point of the process.

• Events are split using RPCI instead of Decision or Regression trees.

Arguably, if RPCI would be used in [8], then they could replicate the results
provided by our approach in processes without loops (see the first difference),
but it would require to manually configure several analysis use cases (see second
and third differences).

Regarding the last difference, decision and regression trees have the ad-
vantage of clearly highlighting the splitting criteria, but they have two main
drawbacks:

First, most decision and regression trees algorithms such as [21] calculate
the correlation between the dependent attribute and all other attributes (using
any correlation metric) and then choose the one that is most correlated to
do the partitioning. Naturally, this leads to overfitting: as long as there is a
positive information gain (regardless of its significance), there will be a partition.
Decision tree algorithms usually incorporate pruning mechanisms to deal with
this. However, decision trees have two drawbacks: they are usually biased
towards selecting attributes with many split values, and they do not assess
whether the correlation between the independent attribute and the dependent
attribute is statistically significant. Several approaches like CHAID [22] and
CART [23] incorporate statistical tests to define wether a partition is relevant,
but they are limited to specific types of attribute distributions. CHAID does not
work with numerical attributes (as it relies on CHI square tests). To overcome
this, binning is applied, which has its own accuracy problems. CART does

19



not establish significant correlations between the independent attribute and the
dependent attribute, so irrelevant partitions can be retrieved. In our approach,
only attributes that are highly correlated to the dependent attribute are split.

Second, decision and regression trees aim to predict a value, whereas we aim
to partition data. Hence, differences in minority classes would be overseen by
approaches based on decision and regression trees. For example, consider an
activity X which can be followed by A, B or C. The approach described in [8]
would not find a difference between (A = 60%, B = 40%, C = 0%) and (A =
60%, B = 0%, C = 40%) because in both cases the majority class, hence, the
actual predicted value, is A (60% of the cases). RPCI detects this because it
focuses on the differences between the distributions instead of the expected (i.e.,
most probable) values.

Furthermore, to the best of our knowledge, only Recursive Partitioning by
conditional Inference (RPCI) is able to perform unbiased selection of signifi-
cantly correlated attributes with arbitrary distributions. This motivates the
choice of using RPCI in this paper.

7 Conclusions

The problem of detecting process variants in event logs has been tackled by
several authors in recent years. Many authors have successfully solved specific
scenarios where the focus in on specific attributes, such as time. Some have even
provided general solutions, but they fail to filter out irrelevant splits. To our
knowledge, previous research has not tackled this problem in a general man-
ner. This paper presents an approach that is able to detect relevant process
variants in any available event attribute by splitting any other (combination of)
event attributes. The approach has been implemented and is publicly available.
We also demonstrated that the approach could rediscover designed performance
issues in an artificially generated event log, where certain resources were re-
lated to poorer performance. We also were able to successfully identify points
of process variability inside in a real-life event log and we were able to detect
process variants without the use of domain knowledge, confirming such variabil-
ity using process comparison techniques. Therefore, our approach provides a
viable solution to process variant detection, even when no domain knowledge is
available.

As future work we plan to work on analyzing the impact of detected variants
in other parts of the process in an a priori fashion. Also, we aim to expand this
work by ranking the detected relevant partitions (and their variants) based on
partition quality criteria, such as those defined in [24].

References

[1] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of
Business Process Management. Springer-Verlag Berlin Heidelberg (2013)

20



[2] Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware
Information Systems: Bridging People and Software through Process Tech-
nology. John Wiley and Sons, Inc. (2005)

[3] van der Aalst, W.M.P.: Process Mining: Data Science in Action. 2nd edn.
Springer-Verlag Berlin Heidelberg (2016)

[4] van der Aalst, W.M.P., et al: Process Mining Manifesto. In: Business
Process Management Workshops of BPM 2011, Springer Berlin Heidelberg
(2012) 169–194

[5] Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and Accurate
Business Process Drift Detection. In: Business Process Management: 13th
International BPM Conference, Springer International Publishing (2015)
406–422

[6] Bose, R.P.J.C., van der Aalst, W.M.: Context Aware Trace Clustering:
Towards Improving Process Mining Results. In: Proceedings of the 2009
SIAM International Conference on Data Mining. (2009) 401–412

[7] Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: A Generic
Framework for Context-Aware Process Performance Analysis. In: Pro-
ceedings of CoopIS 2016, Springer International Publishing (2016) 300–317

[8] de Leoni, M., van der Aalst, W.M., Dees, M.: A General Process Mining
Framework for Correlating, Predicting and Clustering Dynamic Behavior
based on Event Logs. Information Systems 56 (2016) 235 – 257

[9] Bolt, A., de Leoni, M., van der Aalst, W.M.P.: A visual approach to spot
statistically-significant differences in event logs based on process metrics.
In: Proceedings of 28th International Conference on Advanced Information
Systems Engineering (CAiSE 2016). Volume 9694., Springer International
Publishing (2016) 151–166

[10] Dobiński, G.: Summirung der reihe
∑

nm

n! für m = 1, 2, 3, 4, 5, . . . .
Grunert’s Archiv 61 (1877) 333–336

[11] Hothorn, T., Hornik, K., Zeileis, A.: Unbiased Recursive Partitioning: A
Conditional Inference Framework. Journal of Computational and Graphical
Statistics 15(3) (2006) 651–674

[12] Strasser, H., Weber, C.: The Asymptotic Theory of Permutation Statistics.
Mathematical Methods of Statistics 8 (1999) 220–250

[13] van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters,
A.J.M.M., van der Aalst, W.M.P.: The ProM Framework: A New Era
in Process Mining Tool Support. In: Applications and Theory of Petri
Nets. Volume 3536 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2005) 444–454

21



[14] Hothorn, T., Hornik, K., Zeileis, A.: ctree: Conditional Inference Trees.
Cran. R project (2015)

[15] Gama, J.a., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A
Survey on Concept Drift Adaptation. ACM Comput. Surv. 46(4) (2014)
44:1–44:37

[16] Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting Concept Drift in Pro-
cesses Using Graph Metrics on Process Graphs. In: Proceedings of the
9th Conference on Subject-oriented Business Process Management, ACM
(2017) 6:1–6:10

[17] Martjushev, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Change Point
Detection and Dealing with Gradual and Multi-order Dynamics in Process
Mining. In: Proceedings of the 14th International Conference in Business
Informatics Research (BIR), Springer International Publishing (2015) 161–
178

[18] Weerdt, J.D., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active
Trace Clustering for Improved Process Discovery. IEEE Transactions on
Knowledge and Data Engineering 25(12) (2013) 2708–2720

[19] van Oirschot, Y.: Using Trace Clustering for Configurable Process Discov-
ery Explained by Event Log Data. Master’s thesis, Eindhoven University
of Technology, Eindhoven, the Netherlands (2014)

[20] Hompes, B., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P., Buurman,
J.: Detecting Change in Processes Using Comparative Trace Clustering. In:
5th International Symposium on data-driven process discovery and analysis
(SIMPDA). (2015) 95–108

[21] Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)

[22] Kass, G.V.: An Exploratory Technique for Investigating Large Quantities
of Categorical Data. Journal of the Royal Statistical Society. Series C
(Applied Statistics) 29(2) (1980) 119–127

[23] Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and
Regression Trees. CRC press (1984)

[24] Montani, S., Leonardi, G.: Retrieval and clustering for supporting business
process adjustment and analysis. Information Systems 40 (2014) 128–141

22


