
 1

A Reference Model for Team-Enabled Workflow Management Systems

W.M.P. van der Aalst1 and A. Kumar2,3

1 Faculty of Technology Management, Eindhoven University of Technology,
PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.

2 Database Systems Research Department, Bell Laboratories,
600 Mountain Ave., 2A-406, Murray Hill, NJ 07974, USA.

E-mail: w.m.p.v.d.aalst@tm.tue.nl, akhil@acm.org

Abstract

Today’s workflow systems assume that each work item is executed by a single worker. From
the viewpoint of the system, a worker with the proper qualifications selects a work item,
executes the associated work, and reports the result. There is usually no support for teams,
i.e., groups of people collaborating by jointly executing work items (e.g., the program
committee of a conference, the management team of a company, a working group, and the
board of directors). In this paper, we propose the addition of a team concept to today’s
workflow management systems. Clearly, this involves a marriage of workflow and groupware
technology. To shed light on the introduction of teams, we extend the traditional
organizational meta model with teams and propose a Team-enabled Workflow Reference
Model. For this reference model and to express constraints with respect to the distribution of
work to teams, we use OCL (Object Constraint Language).

Keywords: Workflow management systems, Team-enabled Workflow Reference Model,
Computer supported cooperative work, groupware, organizational models.

1. Introduction
Most publications on workflow management focus on the process (or control-flow)
perspective, neglecting the representation of organizational structures and the distribution of
work [26], as they relate to a workflow management system. Thus, there is a lack of
consensus on the type of organizational structures to be supported. For example, consider how
the Staffware system supports the concept of a so-called work queue. Both workers and work
items are assigned to work queues. A worker may be linked to multiple work queues and a
work queue may be visible to multiple workers, in which case it is called a group queue. Each
worker also has a personal queue. Personal work queues can be used to support a push
mechanism, i.e., work items are assigned to specific workers. On the other hand, group
queues can be used to support a pull mechanism, i.e., multiple workers can view a shared pile
of work items and select specific work items. Other workflow systems use other paradigms:
IBM’s MQ Series Workflow [20] supports both organizations and roles instead of one queue
mechanism. Another example is the workflow management system COSA [8], which supports
arbitrary organizational dimensions (e.g., groups, roles, authorization, etc.) and merges all
relevant work items into one personalized list. The fact that the available systems are quite
different with respect to their handling of organizational issues is demonstrated by the varying
support for delegation: Systems either have no support for delegation or offer rather specific
functionality. Another aspect in which systems are quite different is the distinction between
authorization and work distribution. In many systems authorization (the ability to execute a

3 On leave from the University of Colorado, Boulder.

 2

work item) and distribution (assigning tasks to workers) coincide. (Recall the work queue
paradigm in Staffware.) Other systems such as FLOWer by Pallas Athena allow for a clear
separation of authorization and work distribution. This lack of consensus is also illustrated by
the absence of any proposals from the Workflow Management Coalition (WfMC, [24])
concerning the representation of organizational structures and the distribution of work.
Although there is a working group on resource modeling (WfMC/WG9), no standards have
been proposed. The absence of consensus is an important problem and has been addressed
recently by some authors [26,27].

The scope of this paper is limited to the representation of organizational structures and the
distribution of work in the context of team support. To the best of our knowledge, all
commercial workflow products assume a functional relation (in the mathematical sense)
between (executed) work items and workers, i.e., from the viewpoint of the workflow
management system each work item is executed by a single worker. A worker selects a work
item, executes the corresponding actions, and reports the result. It is not possible to model or
to support the fact that a group of people, i.e., a team, executes a work item. Note that current
workflow technology does not prevent the use of teams: Each step in the process can be
executed by a team. However, only one team member can interact with the workflow
management system with respect to the selection and completion of the work item. Thus,
current workflow technology is not cognizant of teams. This is a major problem since teams
are very relevant when executing workflow processes. Consider for example the selection
committee of a contest, the management team of a subdivision, the steering committee of an
IT project, and the board of directors of a car manufacturer. In addition to providing explicit
support for modeling teams, it is also important to recognize that individuals typically
perform different roles within different teams. For example, a full professor can be the
secretary of the selection committee for a new dean, and the head of the selection committee
for tenure track positions. These examples show that modeling of teams should be supported
by the future generation of workflow products. In this paper, we explore concepts and
technologies for making workflow management systems team enabled.

Groupware technology ranging from message-based systems such as Lotus Notes to group
decision support systems such as GroupSystems offer support for people working in teams.
However, these systems are not equipped to design and enact workflow processes. Based on
this observation a marriage between groupware technology and workflow technology seems
to be an obvious choice for developing team-enabled workflow solutions. Systems such as
Lotus Domino Workflow [28] provide such a marriage between groupware and workflow
technologies. Unfortunately, these systems only partially support a team working on a work
item. For example, in Lotus Domino Workflow, for each work item one needs to appoint a so-
called activity owner who is the only person who can decide whether an activity is completed
or not, i.e., a single person serves as the interface between the workflow engine and the team.
Clearly such a solution is not satisfactory.

As a starting point for investigating team-enabled workflow management systems, we take a
basic organizational meta model. This model serves as a reference model for the basic
functionality offered by today’s workflow management systems. This model is a
simplification of the meta models of existing workflow management systems and the meta
models proposed in literature (cf. [6,23,26,27]). Next, we focus on the addition of teams.
Therefore, we take the “greatest common divisor” of existing organizational meta models and
add the concept of teams. We use UML class diagrams to represent the basic and extended
meta model. Moreover, we clearly define the constraints in terms of OCL. OCL (Object

 3

Constraint Language, [30,31,39]) is an integral part of the UML (version 1.1 and upwards,
[16,32]). OCL is a powerful language to describe constraints at the meta level. For example, it
is possible to specify that a worker not having the required role cannot execute a work item.
OCL can also be used to describe constraints specific for the organization or the workflow
process, e.g., “The department head should either approve or pre-check each purchase.” and
“Insurance claims involving more than $5000 should not be handled by an office clerk but by
a trained expert.” Examples will show that many constraints at the meta, organizational, and
process level can be expressed quite easily using OCL.

Based on the team-enabled reference model we explore various aspects of work distribution in
the presence of teams. For example, teams can vote on the outcome of a successfully
completed work item. In fact, the completion of a work item executed by a team could be
subject to discussion, e.g., there can be a conflict: Some team members may dispute the
completion of work item reported to be finished by other team members. In the traditional
setting, one worker indicates the completion of a work item. This is not necessarily the case
for teams. Other issues related to the operation of a team are: working at same time/different
time, same place/different places, scheduled/ad-hoc meetings, etc. We will classify and
structure these issues in more detail later and discuss possible realizations of the team
concept. Clearly, team-enabled workflow management systems should borrow concepts or
components of existing groupware technology. Therefore, we propose a marriage between
workflow and groupware technologies, and give an architecture for it.

The remainder of this paper is organized as follows. First we introduce the basic workflow
concepts, a simple organizational meta model, and OCL as a language to express workflow
constraints. In Section 3, we introduce the team concept and extend the organizational meta
model to incorporate support for teams. We also provide generic (i.e., meta level) and specific
(i.e., organizational/process level) constraints. In Section 4, we explore team allocation
mechanisms. Then we discuss possible realizations using groupware technology. Section 6
concludes this paper.

2. Workflow management and organizational models
In this section we first introduce our terminology such as case, task, resource, role and work
item, and then present a meta model for organizational modeling of work distribution. We
also show how OCL can be used to model both generic and specific constraints. Note that the
team concept is introduced only in Section 3.

2.1. Workflow management concepts

The fundamental property of a workflow process is that it is case-based [1]. This means that
every piece of work is executed for a specific case. Examples of cases are an insurance claim,
a tax declaration, a customer complaint, a mortgage, an order, or a request for information.
Thus, handling an insurance claim, a tax declaration, or a customer complaint are typical
examples of workflow processes. Cases are usually generated by an external customer.
However, it is also possible that a case is generated by another department within the same
organization (an internal customer). A typical example of a process that is not case-based, and
hence not a workflow process, is a production process such as the assembly of bicycles. The
task of putting a tire on a wheel is (generally) independent of the specific bicycle for which
the wheel will be used. Note that the production of bicycles to order, where procurement,

 4

production, and assembly are driven by individual orders, can be considered as a workflow
process.

The goal of workflow management is to handle cases as efficiently and effectively as possible
[23,24]. A workflow process is designed to handle large numbers of similar cases. Handling
one customer complaint usually does not differ much from handling another customer
complaint. The most important aspect of a workflow process is the workflow process
definition [1]. This process definition specifies the order in which tasks must be executed.
Alternative terms for workflow process definition are “procedure,” “workflow schema,”
“flow diagram,” and “routing definition”. Tasks are ordered by specifying for each task the
conditions that need to be fulfilled before it may be executed. In addition, it is specified which
conditions are fulfilled by executing a specific task. Thus, a partial ordering of tasks is
obtained. In a workflow process definition, standard routing elements are used to describe
sequential, alternative, parallel, and iterative routing thus specifying the appropriate route of a
case. The workflow management coalition (WfMC) has standardized a few basic building
blocks for constructing workflow process definitions [24]. An OR-split is used to specify a
choice between several alternatives; an OR-join specifies that several alternatives in the
workflow process definition come together. An AND-split and an AND-join can be used to
specify the beginning and the end of parallel branches in the workflow process definition. The
routing decisions in OR-splits are often based on data such as the age of a customer, the
department responsible, or the contents of a letter from the customer. For these basic
workflow patterns we refer to [24]. For more advanced patterns we refer to the workflow
patterns web site www.tm.tue.nl/it/research/patterns (cf. [2]).

Many cases can be handled by following the same workflow process definition. As a result,
the same task has to be executed for many cases. A task that needs to be executed for a
specific case is called a work item. An example of a work item is the order to execute task
“send refund form to customer” for case “complaint of customer Baker”. Most work items
need a resource in order to be executed. A resource is either a machine (e.g., a printer or a
fax) or a person (participant, worker, or employee). Besides a resource, a work item often
needs a trigger. A trigger specifies who or what initiates the execution of a work item. Often,
the trigger for a work item is the initiative of the resource that must execute the work item.
Selecting a work item from a work list (work queue or in-tray) corresponds to generating a so-
called resource trigger. Other common triggers are external triggers and time triggers. An
example of an external trigger is an incoming phone call of a customer; an example of a time
trigger is the expiration of a deadline. A work item that is being executed is called an activity.
If we take a photograph of the state of a workflow, we see cases, work items, and activities
(see Figure 1). Work items link cases and tasks. Activities link cases, tasks, triggers, and
resources.

http://www.tm.tue.nl/it/research/patterns

 5

task

case

resource

work item = case + task

activity = case + task + resource

process dimension

resource dimension

case
Figure 1: The relation between cases, resources, tasks, work items, and activities.

From the viewpoint of maintenance and flexibility, it is not particularly wise to assign work
items to specific people. Rather, it is better to decouple the workflow process definition and
the organizational structure and population. Resources, ranging from humans to devices, form
the organizational population and are mapped onto roles. In office environments, where
workflow management systems are typically used, the resources are mainly human. However,
because workflow management is not restricted to offices, we prefer the term resource. To
facilitate the allocation of work items to resources, resources are grouped into roles. A role,
also referred to as resource class, is a group of resources with similar characteristics. There
may be many resources in the same role and a resource may be a member of multiple roles. A
role may be based on the capabilities (i.e., functional requirements) of its members. The
classification into roles may also be based on the structure of the organization, e.g., team,
organizational unit, branch, or department. Note that we use the term “role” in a broader sense
than is common, say, in CSCW/workflow literature, where the role concept is typically
restricted to a classification based on functional requirements. In this paper, any class of
resources (human or other) can serve as a role.

Constraints also play an important role in workflow management, especially when the
structure and policies of an organization are taken into account and security considerations are
important. Considerable work on constraints has been done in the context of the RBAC
(Role-Based Access Control) model [15,33,34]. The salient features of RBAC are that
permissions are associated with roles and users are made members of roles thereby acquiring
the associated permissions. Extensions of RBAC and other constraint related issues and
algorithms are discussed in [3,4,5,7,29,36,40]. However, we will not go into the details here
since that is not the main focus of this paper.

2.2. Organizational meta model

The workflow concepts just introduced will be structured using a meta model represented by a
UML class diagram [16,32]. Several authors have developed meta models for structuring
workflow concepts. Consider for example the work by Zur Mühlen [26,27] who evaluated the
organizational capabilities of workflow products using meta models. For the purpose of this
paper it is not meaningful to construct a detailed organizational meta model. There is no
consensus on the functionality of workflow management systems with respect to
organizational modeling and work distribution. Therefore, any attempt to construct a detailed
organizational meta model would rule out most of the existing products. Instead of providing
a detailed model, we give a basic model supported by most of today’s workflow management
systems.

 6

creation_time

w ork _item description
operations
pre_condition
post_condition

tas k

case_id
case_creator
start_time
compl_time

cas e

start_time
compl_time

activity

w i2

0..*

task1

1..1

instance_of

w i10..*

case11..1

for

case2

1..1

act2

0..*

for

task21..1

act10..*

instance_of

description
role_type

ro le super

0..1

sub0..*
isa

res_id
name
contact
part_time

re s ource

role10..*

res10..*

has

act3

0..*

res2

1..1

uses

input 0..*

output

0..*

f low _relation

task3

0..*

role2

1..1

requires

Figure 2: Basic organizational meta model.

Figure 2 shows the UML class diagram representing the basic meta model. The class diagram
consists of classes (denoted by squares) and relationships (associations and generalizations
denoted by lines and arrows). It is assumed that the reader is familiar with the UML notation.
The four classes on the left-hand-side of the diagram correspond to the concepts case, task,
work item, and activity. A work item is an instantiation of a task for a given case. A work
item corresponds to precisely one task, i.e., the multiplicity of the role1 task1 of association
instance_of is 1..1. A task may correspond to arbitrarily many work items, i.e., the
multiplicity of the role wi2 of association instance_of is 0..*. Similarly, a work item
corresponds to one case and one case may correspond to multiple work items. Work items
correspond to concrete pieces of work, while tasks are abstract and defined at the level of the
workflow process definition. An activity is also an instantiation of a task for a given case and
corresponds to the actual execution of a task. Precisely one resource is associated with an
activity denoted by the multiplicity 1..1 of role res2 of association uses. The class activity is
related to the class work_item. A work item becomes an activity when a worker starts
executing the corresponding task for the corresponding case. Therefore, we could have given
a different class diagram with an association between the two classes (instead of the for and
instance_of associations). We did not do this to simplify the navigation using OCL and to
avoid the dependency of activities on work items (e.g., a work item may be removed when the
corresponding activity is launched). The class role is used to specify the mapping of tasks
onto resources. Generally, a role concept is used to decouple the workflow process definition
from concrete resources, e.g., directives such as “Task approve contract should be executed
by Bill Smith” should be avoided. Therefore, each task is assigned to a role, e.g., “Task
approve contract should be executed by someone with the role manager”. Moreover,

1 Note that the term role is used in UML to denote the end of an association.

 7

resources are mapped on roles, e.g., "Bill Smith has the role manager”. One resource can have
multiple roles and several resources may share the same role.

The multiplicity of role role2 of association requires is 1..1, indicating that a task is mapped
onto one role. In several workflow management systems it is possible to combine roles using
expressions such as “The union of roles A and B”, “Someone with role A or B, but not role
C”. To keep the meta model as simple as possible and consistent with systems such as
Staffware [37], which allow for just one role (called queue) per task, we assume that each task
can be mapped onto one role. Note that any expression in terms of roles can be mapped onto a
virtual role whose members are determined by calculating the expression.

Figure 2 shows that roles can be related via the isa association. One role can be a subclass or
superclass of another role. If role A is a subclass of role B, then resources with role A can
execute tasks mapped onto role B. Thus, a subclass role is "superior" to its parent class role,
in the sense that it can perform all the tasks of its parent classes and more. Several workflow
management systems allow for such a relationship between roles (e.g., COSA) and the
concept is quite useful for organizational modeling, cf. the role hierarchies in RBAC [33]. We
will refer to this concept using the term role inheritance. Note that the isa association is a
generalization at the instance level and not at the class level. Therefore, the isa association is
not a generalization in UML terms.

Association flow_relation refers to causal dependencies between tasks. These flow relations
are used to model sequential, conditional, parallel, and iterative routing. Note that the focus of
Figure 2 is on organizational aspects of workflow management. Therefore, we limit ourselves
to mentioning the existence of such flow relations, and refrain from detailed and system
specific discussions about AND/OR-splits/joins, etc.

Figure 2 also lists some representative attributes. These attributes are illustrative and not
exhaustive. In particular, we draw attention to the role_type attribute in class role. As
indicated in Section 2.1, a role may be based on functional requirements (e.g., qualifications,
capabilities, or competences), organizational requirements (e.g., teams, organizational units,
branches, or departments), or positions within organizational entities (e.g., department head,
dean of a faculty). Therefore, examples of role types include qualification, position, and
competence. An example of a role of type qualification is “full professor”, an example of a
role of type position is “vice president of the board of directors”, and an example of a role of
type competence is “speaks Dutch”. The distinction between these subclasses is rather
arbitrary and not relevant for the remainder. However, it is important to note that roles are
associated with the actual execution of work and not with issues like responsibility and
accountability.

Let us consider a few workflow management systems and map these systems onto the meta
model shown in Figure 2.

Staffware 2000 (Staffware PLC, [37]) supports the concept of work queues. A work queue
can be compared to a role. Each worker (i.e., resource) has a private work queue and may
have multiple group queues. The work items in the group queue are visible to all group
members. Staffware does not allow for role inheritance (“Role A is a subclass of role B”) or
role expressions (“Someone with role A and role B”). Therefore, subclassing and role
expressions need to be handled explicitly, i.e., by adding resources of the subclass to the
superclass and by adding an additional role for each expression.

 8

MQ Series Workflow (IBM, [20]) allows for the definition of roles and organizations.
Organizations are organized hierarchically and a worker can be a member of only one
organization. For each task and process it is possible to specify criteria based on
organizations, roles, and levels. Organizations can be considered as special roles that are
grouped hierarchically. Role inheritance is only supported for these organizational roles.
Advanced role expressions (“Someone with role A and B but not role C”) are not supported
and, similar to Staffware, these role expressions need to be handled by additional roles.

COSA 3.0 (Ley GmbH, [8]) allows for advanced constructs with respect to organizational
modeling and work distribution. COSA uses groups and group expressions to distribute work.
COSA groups correspond to roles. Using the COUE (COSA User Editor) tool one can define
an arbitrary number of role hierarchies (e.g., role hierarchies based on qualification, position,
and competence), which can be deployed in parallel. It is possible to use arbitrary complex
role expressions and role inheritance is supported.

Lotus Domino Workflow (Lotus/IBM, [28]) allows for the definition of workgroups,
departments, and roles. People can be assigned to workgroups, departments, and roles. A
person can belong to only a single department but can be assigned to multiple workgroups and
roles. The Lotus Domino Workflow concepts workgroup, department, and role can be seen as
special cases of the role concept used in Figure 2. Lotus Domino Workflow is one of the few
systems which actually supports a team concept. A team is a group of people working on one
activity. Unfortunately, all interaction between the team members and the workflow is
through a so-called activity owner. The activity owner is the only person who can decide
whether an activity is started or completed. Moreover, there is neither explicit modeling of
teams nor any support for people working in teams. The only team-related functionality
supported by Domino Workflow is the sharing of documents.

These four workflow products are quite representative of the current generation of production
workflow systems. Only one of these systems (Lotus Domino Workflow) supports the
concept of teams. However, team interaction is mainly limited to the sharing of documents in
this system.

2.3. Modeling organizational constraints with OCL

The organizational meta model shown in Figure 2 does not express constraints that need to be
satisfied, e.g., any resource may be attached to a particular work item. As indicated in the
introduction, we use OCL (Object Constraint Language, [30,31,39]) to express constraints at
the meta, organizational, and process level.

OCL is an integral part of the UML (version 1.1 and upwards, [16,32]). It has been developed
within IBM and allows for the definition of integrity constraints. OCL has also been used to
formalize the meta model of UML. OCL is based on set theory and can be used to specify
invariants on classes and the relationships among classes in UML class diagrams.

2.3.1. Generic OCL constraints

Consider the organizational meta model shown in Figure 2. The model shows several
multiplicity constraints, also referred to as cardinality constraints, e.g., every activity uses
exactly one resource. An example constraint, which cannot be expressed as a simple
cardinality constraint, is the requirement that activities should only be executed by resources

 9

having the proper role, i.e., the resource should have the role associated with the
corresponding task. Ignoring role inheritance, let us express this constraint in OCL.

activity
(C.1) self.task2.role2.res1–>includes(self.res2)

The name of the class underlined is the context of the constraint, an occurrence of self in it
refers to any instance of that class. For example, in constraint (C.1) above, self refers to an
instance of class activity. Starting from a specific object, we can navigate a path along a series
of associations in the class diagram (Figure 2) to refer to other objects and their properties.
For navigation along associations, we use the role2 names on the opposite association end
point, e.g., self.task2 is the task corresponding to the activity represented by an instance of
activity and self.res2 is the resource corresponding to self. If the multiplicity of the association
end point is 0..1 or 1..1, then the value of such an expression is an object. If this is not the
case, navigation will result in a set of objects. For example self.res2.act3 gives all activities
executed by the resource self.res2. self.task2.role2.res1 is the set of resources having role
self.task2.role2, and self.task2.role2 is the role of the task corresponding to activity self. OCL
provides many operators/operations for reals, integers, strings, booleans and enumerations.
OCL also provides several set operations. One of these operations is includes which tests the
presence of an element in a given set. For example, (C.1) is a boolean expression which is
true if resource self.res2 is an element of the set of resources given by self.task2.role2.res1.
Clearly this boolean expression corresponds to the desired constraint "Activities should only
be executed by resources having the proper role”.

One central concept in OCL is that of collections. There are three types of collections: sets,
sequences, and bags. The operation includes used in (C.1) is defined on collections, and
operations defined for collections can also be applied to sets, sequences, and bags. The arrow
“–>” is used to access collections. Within OCL all collections of collections are automatically
flattened, i.e., {{1,2},{3,4},{5,6}}={1,2,3,4,5,6}. The dot “.” notation can be used to navigate
along associations (and other relations), and also to access attributes of objects.

To illustrate OCL in more detail, consider a few examples in the context of class case (i.e.,
self is a contextual instance of case).

self.case_creator is the initiator of the instance.
self.act2.res2.name is the collection of all names of resource working on self.
self.act2.res2–>select(part_time < 0.50) is the collection of all resources working on case
self and working less that 50 percent.
self.act2.res2–>select(part_time <0.50)–>size is the number of resources working part-
time (i.e. less than 50 percent) and working on self.
self.act2.start_time is the set of all execution dates of activities corresponding to case self.
self.act2.forall(start_date > self.start_date) requires that all activities belonging to case
self be executed after the start date of the case.

Constraint (C.1) did not take into account role inheritance. For example, if role A is a subclass
of role B, then tasks with role B can be executed by resources having role A. There are two
ways to deal with this constraint. Implicit inheritance assumes that if role A is a subclass of
role B, then all resources having role A also have role B. For explicit inheritance we do not

2 To avoid confusion, we use the UML term “role” as little as possible. Instead we use the term “association
end”.

 10

make this assumption, i.e., it is possible to have resources which have role A but not role B.
We will formalize both types of constraints using OCL.

For implicit role inheritance we use the following OCL constraints:

activity
(C.2) self.task2.role2.res1–>includes(self.res2)
role
(C.3) self.res1–>includesAll(self.sub.res1)

(C.2) is same as (C.1). (C.3) takes an arbitrary role self and states that the set of resources
having this role (self.res1) contains all resources of all its subclasses (self.sub.res1).

For explicit role inheritance we need to relax (C.2) and limit the scope of (C.3). Although role
A is a subclass of role B, there may be resources which have role A but not role B.
Nevertheless, since role A is "superior" to role B, these resources can execute tasks which
require role B. To allow for such a form of inheritance, we can use the following OCL
constraint:

activity
(C.4) self.task2.role2.res1–>includes(self.res2) or self.task2.role2.sub.res1–>includes(self.res2)

This constraint is a two-part boolean expression separated by boolean or. The first part
corresponds to (C.2). The second part takes subclasses into account. self.task2.role2.sub is the
set of all subclasses of the required role. Note that inheritance is limited to one level, i.e., only
the direct subclasses are taken into account as opposed to all subclasses. This corresponds to
the notion of limited inheritance introduced in [33]. Sometimes, it is useful to not limit
inheritance to one level, and allow two or more levels. While it is easy to specify, using OCL,
that inheritance is limited to a fixed number levels, it is very hard to specify a constraint
which allows for an arbitrary number of levels because transitive closure is not supported in
OCL [25]. Mandel and Cengarle [25] have shown that OCL is not equivalent to a Turing
machine and that the OCL expression for the transitive closure of a binary relation is very
long, tricky, and far from intuitive. Therefore, we use the shorthand notation sub* which
corresponds to the transitive closure of relation isa in Figure 1 projected onto association end
sub. Using this shorthand notation full explicit role inheritance is specified as follows:

activity
(C.5) self.task2.role2.sub*.res1–>includes(self.res2)

2.3.2. Specific OCL constraints

The OCL constraints discussed thus far are generic, i.e., at the meta level. OCL can also be
used to reflect constraints specific for a particular organization or a particular workflow
process.

Let us first consider an example of constraints at the organizational level. The following OCL
constraint specifies a rather rigorous separation of duty rule:

activity
(C.6) not(self.case2.act2–>excluding(self).res2–>includes(self.res2))

 11

self.case2.act2 are all activities of the case activity self belongs to. self.case2.act2–>
excluding(self).res2 is the set of resources executing other activities of this case. This set
should not include the resource executing self. Hence, the OCL constraint is a boolean
expression requiring that no resource should execute multiple activities for the same case
(separation of duties idea).

Assume that the organization has two workers named “Bill” and “Al”, who must not work on
the same case. Assuming an attribute name, this can be expressed as follows:

case
(C.7) not(self.act2.res2.name–>includesAll(Set{‘Bill’, ‘Al’}))

The standard OCL operation X–>includesAll(Y) returns true if the entire collection Y is
included in collection X. Similarly, it is possible to express constraints specific for a given
workflow process. Assume that class task has the attribute name. The following constraint
specifies that the two tasks, “transfer money” and “make decision”, should not be executed
by the same resource.

case
(C.8) (self.act2–>select(a | a.task2.name = ‘transfer money’)).res2 –>
intersection((self.act2–> select(a | a.task2.name = ‘make decision’)).res2) –> isEmpty

The standard OCL operation select is a filter such that X–>select(x | Bx) = { x ∈ X | Bx }. The
constraint requires that the intersection set of the resources performing these two tasks on a
case should be empty.

The examples above show that OCL can be used to express constraints at the level of the
organizational meta model, the organizational level, and the process level.

3. Adding teams to organizational workflow models
In this section we introduce the team concept. First, we discuss the concept. Then, we provide
the meta model and the corresponding OCL constraints at the meta level. Finally, we illustrate
the capability of OCL to express organization and process specific constraints.

3.1. The team concept

In the previous section, we discussed the functionality of today’s workflow management
systems with respect to organizational modeling and work distribution. As far as we know,
none of the commercial systems available supports the concept of teams. The Webster
dictionary defines team as “a number of people working together on a common task.” If we
translate this to workflow terminology, a team can be defined as a group of resources (i.e.,
workers, participants) working together on a single work item. In existing workflow systems
work items are distributed over resources. Although a work item may be offered to many
resources, from the perspective of the workflow management system, a work item is still
executed by one resource. Consider the association uses in Figure 2: Each activity, i.e., a work
item being executed, corresponds to one resource. Clearly, it is possible to bypass the
workflow management system and have the work item executed by a team. This means that
one team member acts as the liaison between the team and the workflow management system.
This team member selects the work item from his in basket and reports the completion of the

 12

corresponding activity to the workflow system. However, the absence of a team concept is a
serious deficiency, and hence, workflow management system should support teamwork. From
a security viewpoint, it is important to be able to specify requirements on the team structure
and team members. For enactment, it is important to have mechanisms to support team
collaboration and to support team decision processes. For management and accounting
purposes, it is important to be able to trace team membership and contributions of individual
resources. Therefore, we propose team-enabled workflow management systems. Examples of
teams that could benefit from such a workflow management system are:

the program committee of a conference consisting of a chair and 12 members,
the management team of a subdivision consisting of a general manager, an engineer, a
sales representative, and a secretary,
the multidisciplinary team of medical specialists treating patients with Parkinson’s
disease, and
the design team of a new car.

work item 1

work item 2

work item 3

work item 4

horizontal partitioning

ve
rti

ca
l p

ar
tit

io
ni

ng

team

Figure 3: Horizontal partitioning versus vertical partitioning.

To illustrate the essence of teamwork, as opposed to ordinary work distribution supported by
the current generation of workflow products, consider Figure 3. Today’s products support
only a vertical partitioning of work, i.e., work items are distributed over resources and,
eventually, every work item is executed by one resource. As Figure 3 shows there is another
dimension when it comes to the distribution of work. For a horizontal partitioning of work,
multiple resources are involved in an activity, i.e., the execution of a single work item. For
example, the members of the selection committee execute the work item “Select new dean of
the Computing Science Faculty.”

To decouple the workflow process definition from concrete resources, the concept of role was
introduced as explained in the previous section. For teams, we use a similar concept and
distinguish between teams and team types. Within a team there can be several positions (such
as manager, director, VP, etc.) and team members produce concrete contributions which lead
to the completion of a task. To be able to model activities executed by teams, we introduce
teams, team types, team positions, and contributions.

A team is a group of resources. A team can have several members and one person can be a
member of many teams. Some teams are created on-the-fly, i.e., the team is created the

 13

moment an activity requires a team of a specific type. Other teams are of a more
permanent nature and handle many activities.
A team type does not refer to specific resources but can be seen as the role concept
extended to teams. A team type refers to a structure which corresponds to a group of
resources having certain properties with respect to the composition of the team in terms of
sizes and roles of its members.
A team position is a specified role within a team. For example, consider a policy that “the
chair of the selection committee should be a full professor, while other members should
be full-time faculty of any rank.” In this example, the chair and member have different
roles within the team.
Contributions are produced by resources within the context of an activity and link team
positions to concrete resources. Without such a notion, the relationship between resources
within a team and team positions is undefined.

A role can be considered as a special team type consisting of only one team position.

3.2. Overview of Organizational meta model extended with teams

Figure 4 shows the organizational meta model extended with teams. (See Appendix 1 for a
larger diagram.) Four new object classes have been added: team, team type, team position,
and contribution. For now we focus on the first three of these object classes. The object class
contribution is discussed in the second half of this section.

Since a role can be considered as a special team type with just one team position, the
association between task and role is replaced by an association between task and team_type.
The association requires links each task to a team type. Similarly, the association between
activity and resource is replaced by an association between activity and team. Association
uses links each activity to a team. Every activity corresponds to one team, i.e., the team
executing the corresponding activity. Note that a team is an instance of team_type. Objects of
class team_position relate team types and roles. The association instance_of relates each team
to its corresponding team type. The association instance_of shows that a team is more than
just a group of resources: A team instantiates a team type and the same set of resources can
correspond to several teams. The new association isa which relates team types is similar to the
generalization which relates roles. If team type A is a subclass of team type B, then teams of
type A can execute tasks mapped onto team type B.

Figure 4 shows several attributes. Again, these attributes are representative rather than
exhaustive. For instance, note that the class team_position has an attribute cardinality. This
attribute specifies the number of resources in a given position within a team.

Also note that now there is no association between task and role. Therefore, for tasks
requiring one resource, having a specific role, a singleton team type is introduced, i.e., a team
type with one position of cardinality 1. Therefore, a role can be considered as a special team
type consisting of only one team position. This choice is made to simplify the meta model. An
alternative is to add another association requires with association ends role3 and task4, which
link class task with task role. In this case the cardinality of association end role3 is 0..1
instead of 1..1 because only tasks requiring a single resource are directly linked to a role.
Moreover, the cardinality of association end tt3 is 0..1 instead of 1..1 because tasks requiring
a single resource are not linked to a team type.

In the next section, we show how constraints are modeled for this meta model in OCL.

 14

c reation_time

w ork _item description
operations
pre_condition
post_condition

tas k

case_id
case_creator
s tart_time
compl_time

cas e

s tart_time
compl_time

activity

w i2

0..*

task1

1..1

ins tance_of

w i10..*

case11..1

f or

case2

1..1

ac t2

0..*

f or

task21..1

ac t10..*

ins tance_of

description
role_type

role

cardinality : int
description

team _pos ition

description

team _type

task3

0..*

tt3 1..1

requires

super 0..1

sub

0..*

isa

super 0..1

sub

0..*

isa

res_id
name
contact
part_time

re s ource

c reation_time
end_time

team

description
time
vote
done?

contr ibution

role21..1

tp20..*

requires

tt21..1

tp1

0..* has_pos itions

tp31..1

contr20..*

as

ac t41..1

contr1

0..*

f or

role1

0..*

res1

0..*

has

res20..*

team30..*

member_of

res3

1..1

contr3

0..*

of

ac t3

0..*

team2 1..1
uses

tt1

1..1

team1

0..*

ins tance_of

input 0..*

output

0..*

f low _relation

Figure 4: The organizational meta model extended with teams (also see Appendix).

3.3. Modeling constraints for the team-enabled model in OCL

Next, we use OCL to express various constraints related to the team-enabled meta model.
Consider a constraint to ensure that the team executing the activity is of the proper type. This
constraint is expressed as follows:

activity
(T.1) self.task2.tt3.team1–>includes(self.team2)

Here self.team2 is the team executing the activity self, while self.task2.tt3 is the team type of
the task associated with activity self. Clearly, the team executing the activity should be an
instance of this type.

Each task is mapped onto one team type and each team type has a fixed number of team
positions. Sometimes it is useful to have alternative team configurations. Consider, for
example, alternative selection committees consisting of (1) a full professor and two associate
professors, (2) two full professors and one assistant professor, or (3) a full professor and three
assistant professors. We use the association isa to allow for alternative team configurations.
Let the context of self be team_type. self.sub is a set of team types: These team types are
subclasses of the team type self and correspond to alternative configurations. A task which
requires self can also be executed by teams of one of the types in self.sub. The generalization
allows for tree-like structures. Therefore, it is possible to represent sets and lists of possible
team types.

Above, we did not allow inheritance. Now, we consider a limited form of inheritance of roles
in the next constraint:

 15

activity
(T.2) self.task2.tt3.team1–>includes(self.team2) or
self.task2.tt3.sub.team1–> includes(self.team2)

This constraint is a two-part boolean expression which allows for only one level of
inheritance, i.e., only the direct subclasses can act as an allowed team configuration. For full
inheritance, we need to take the transitive closure of the isa relation. As discussed previously
[25], we resort to the notation sub* to refer to the transitive closure. This is shown below.

activity
(T.3) self.task2.tt3.sub*.team1–>includes(self.team2)

Team types have a fixed number of team positions. A team position specifies a role within the
context of a team. Sometimes, one needs multiple team members having the same role (for
example, two managers may be required on a team). Therefore, the object class team position
has the attribute cardinality. This attribute specifies the number of resources having a
specified role. Clearly, the number of actual team members of each type should match the
specified number of team members of a given type. In fact, also the total number of team
members should match the number specified. Therefore, we add the following OCL
constraints:

team
(T.4) self.res2–> size = self.tt1.tp1.cardinality–>sum
(T.5) self.tt1.tp1 –> forall(x | x.cardinality <=
x.role2.res1 –> intersection(self.res2)–>size)

(T.4) Specifies that the actual number of team members (self.res2–>size) matches the
specified number (self.tt1.tp1.cardinality–>sum). (T.5) is more involved. self.tt1.tp1 is the set
of all specified team positions within a given team, and x represents one of these team
positions. x.cardinality is the required number of resources having role x.role2. x.role2.res1 is
the set of resources having the required role. x.role2.res1 –> intersection(self.res2)–>size is
the number of resources in team self having the required role. Since one resource can have
multiple roles, x.cardinality does not need to be equal to x.role2.res1 –>
intersection(self.res2)–>size, i.e., there can be more resources with the required role. (T.5)
does not take role inheritance into account. To allow for full role inheritance, we could
replace (T.5) by:

team
(T.6) self.tt1.tp1 –> forall(x | x.cardinality <=
x.role2.sub*.res1 –> intersection(self.res2)–>size)

The inequality in this constraint (<=) still leaves the constraint weak in the sense that it may
not model the desired team accurately. Consider a team type with two team positions: one
requiring a resource performing role A and one requiring a resource performing role B.
Moreover, suppose there are two resources: one resource having both roles and another
having neither of these roles. A team consisting of these two resources does satisfy the above
OCL constraints. Nevertheless, it is clear that this team is not a proper instance of the team
type. The constraints given are weak since they do not take the specific contribution of a team

 16

member into account. Therefore, to express the desired constraint in OCL more precisely, we
introduce the object class contribution, shown in Figure 4.

Contributions link team positions to concrete resources. Without this class, the relation
between resources within a team and team positions is undefined. Consider for example a
team type with two positions requiring different roles, A and B, and a team consisting of two
workers, X and Y, each having both roles. Without the class contribution, it is not clear
whether X has position A or B within the team context.

An object of the class contribution corresponds to one activity (association end act4), one
resource (association end res3), and one team position (association end tp3). Figure 4 shows
some attributes for objects of the class contribution. These attributes can be used to reflect the
status and outcome of a contribution, e.g., done? indicates whether, from the viewpoint of the
contributor, the activity is finished, vote indicates the vote of the contributor, time indicates
the time of completion. Note that these attributes are just examples.

The presence of the class contribution allows for a more precise specification of the
constraints mentioned before.

activity
(T.7) self.team2.res2=self.contr1.res3
(T.8) self.team2.tt1.tp1=self.contr1.tp3

(T.7) specifies that the set of team members (self.team2.res2) should match the set of
contributors (self.contr1.res3). (T.8) states that the set of team positions taken by the
contributors should match the set of team positions in the corresponding team. The latter
constraint does not take the cardinality of team positions into account. Moreover, none of the
above constraints guarantees that team members have the required role. Therefore, we need
two additional OCL constraints as follows:

contribution
(T.9) self.tp3.cardinality=self.act4.contr1–>select(x|x.tp3=self.tp3)–>size
(T.10) self.tp3.role2.res1–>includes(self.res3)

(T.9) specifies that the specified number of team members holding a position
(self.tp3.cardinality) should match the actual number of contributors linked to this position
(self.act4.contr1–>select(x|x.tp3=self.tp3)–>size). Note that the context of self is a
contribution and self.act4.contr1 is the set of contributions within the context of one activity.
(T.10) guarantees that team members have the required role: self.res3 is the resource taking
care of the contribution self, and self.tp3.role2.res1 is the set of resources having the role
required for the corresponding team position. Clearly, self.res3 should be included in
self.tp3.role2.res1. The second constraint does not take role inheritance into account. Both
limited and full inheritance can be taken into account, e.g., (T.10) should be replaced by
self.tp3.role2.sub*.res1–>includes(self.res3) to allow for full inheritance.

The meta model of Figure 4 is a key contribution of this paper. We call this model the Team-
Enabled Workflow Reference Model. Using OCL, we have specified all reasonable
constraints. To add other meaningful constraints requires the explicit formulation of attributes,
e.g., assuming attributes start_time and compl_time for both class case and class activity, as
shown in Figure 4, we can add the following constraint:

 17

activity
(T.11) self.case2.start_time <= self.start_time and
self.case2.compl_time >= self.compl_time

This constraint specifies that all activities should be executed during the lifetime of a case.
We could have added many such constraints. However, we decided to focus on the more
fundamental and structural requirements.

3.4. Specific OCL constraints

All constraints involving teams described thus far are at the level of the meta model. In this
subsection, we show some examples of constraints at the organizational level. These
examples illustrate the potential of OCL for specifying such constraints.

case
(T.12) self.completed implies self.act2.team2.res2–>size > 10
(T.13) self.act2.contr1.res3.role1–>select(x | x.description=‘manager’)–>notEmpty

(T.12) specifies that more than 10 people need to have been involved in the execution of an
activity. This constraint assumes that class case has an attribute completed. (T.13) specifies
that someone with the role “manager” should execute at least one of the steps in the process.
This constraint uses an attribute description in class role. The two constraints are at the
organizational level. Similarly, we could also have added constraints that are specific to a
given process (see Section 2.3.2).

4. Team Allocation Mechanisms

As noted earlier, previous research on workflow has only considered assignment of work to
individuals, neglecting several important issues we shall consider here in this context. In this
section, we discuss how work is offered to teams and confirmation of completion received
from them. We also discuss various attributes required to model team behavior, and illustrate
them in the context of a complete example.

4.1. Offering work to a team as opposed to an individual

Normally workflow systems employ two mechanisms to offer work to individuals: the push
and pull approaches. In the push approach the workflow system assigns work to a specific
worker, while in the pull approach the work item is offered to multiple workers and, after one
of them accepts it, it is withdrawn from the others. The pull approach is more common and
desirable because it prevents a work item from getting blocked in the queue of a worker who
may not be available. Moreover, the push approach can be seen as a special case of the pull
approach where a work item is offered to just one worker. Consider for example the work
queues in Staffware. From a conceptual and technical point of view, the group queue and the
private work queue are identical. In this subsection we shall therefore consider how the pull
approach would work in the context of teams.

A workflow system can offer work to a team by sending a notification to all eligible workers
who can fill the positions of various members of the team. For instance if a team must have 2
full professors and 1 associate professor, then the workflow system can offer the work item to

 18

all the full professors and all the associate professors. As soon as one associate professor has
accepted the task, it would be withdrawn from all the other associate professors. Similarly,
once two full professors have accepted the task, it would be withdrawn from the other full
professors also.

The drawback with this simple approach is that it could result in teams consisting of
incompatible individuals. This is an important aspect of social organizations. Therefore,
another alternative is that the workflow system would offer the work item to multiple teams,
where each individual would know who the other team members are. In accepting to serve on
a team, an individual would be doing so on the condition that the other named individuals
accept as well. Upon receiving acceptances from all potential members of a specific
candidate team, the workflow system would assign the work item to that team. Moreover, if
any acceptances had been received from other potential members whose team did not get
selected, they would be notified accordingly. Lastly, the work item would be withdrawn from
the queues of workers who failed to respond.
4.2. Receiving confirmation of work completion from a team

When an individual completes his or her task, they would press a button on their screen to
notify the workflow system that a task has been done. The workflow system determines the
next task for this instance and assigns it to a worker. In the case of teamwork, completion by
the team can be notified to the workflow system in two ways. One, each team member would
inform the system separately. As shown in Figure 4, the contribution entity has an attribute
called “Done?” whose value is set to yes when a resource completes its own part of the work
related to this team activity. Thus, when all the members of this team instance set this
variable to “yes”, the workflow system can treat the corresponding team activity as
completed. On the other hand, an alternative is to assign one individual as a team coordinator
and give him or her the responsibility for setting the value of this variable. Note that the latter
corresponds to the way teams are supported in Lotus Domino Workflow. As noted earlier this
is often undesirable.

4.3. Attributes or dimensions for modeling team behavior

In this subsection, we discuss various attributes associated with a team. Two important
attributes that have been introduced in groupware systems are time and place, i.e., are the
participants in a group interacting in the same time/different time dimension, and how are
they physically located in the (same/different) place dimension (see [10,12,21]). These two
dimensions are important for a team as well. In addition, it is also necessary to consider
several other dimensions as follows.

4.3.1. Time/Place

One paradigm for organizing team activities is in terms of the time and place dimensions as
shown below.

 Same Place Different Place
Same Time Meetings, Whiteboards Videoconferencing,

document sharing
Different Time Mailbox, bulletin board Electronic mail, workflow

 19

We adopt this from literature on groupware [10,12,21] because it lends itself well in our
environment also for modeling behavior of different teams. There are four boxes
corresponding to the combinations of same/different time/place. Each box gives examples of
technologies that belong in it. Also, note that the notion of space includes not just physical
space, but also virtual space. Therefore, a bulletin board is considered as “same place,” in a
virtual sense.

4.3.2. Decision criterion/Quorum size

It is important to model the decision-making criterion or criteria, and communicate them to
the team members. For example, a common criterion is voting, i.e., each member votes on
the issue being discussed. If voting is used, it is necessary to inform the members whether the
voting is anonymous or public, can a member see the other members’ votes before casting
their own, the window during which the votes can be cast, what kind of majority is required
(50%, 67%, unanimous, etc.) for the issue to pass and the size of the quorum, i.e., what is the
minimum number of votes that must be cast.

There are a variety of other non-voting based criteria also. For example, by discussion and
recommendations, team interaction can bring a case to the next level without any explicit
voting.

4.3.3. Team task duration (Time out/No time out)

A time out indicates a deadline by which a decision must be made by the team. This is a more
common situation. The alternative is no stated time out, thus giving the team flexibility to
complete its work. For example, occasionally, a team may collaborate on a writing project
where the deadline is somewhat variable. Individual tasks have deadlines too, and if the
deadline for a task expires, the individual who was supposed to perform the task is notified.
However, in the case of team tasks, it is necessary to notify either the coordinator of the team
(if one exists) or every member of the team in order to ensure that appropriate action is taken.

4.3.4. Team interaction style (Structured/ad hoc)

This indicates whether the meeting is formally scheduled (structured) or whether it is ad hoc
(unstructured). In the context of the time/place dimension discussed above, a formally
scheduled meeting would be classified as same time, same place or same time, different place.
On the other hand, an unstructured interaction could take place by means of electronic mail
(different time, different place) or even by an electronic discussion board (same place,
different time). Other aspects of structure could relate to issues like whether transcripts of the
meeting are stored and minutes are prepared. The team might also need additional tools to
facilitate the meeting, e.g., specialized software for demonstrations, charts and graphics.

4.3.5. Rounds (single/multiple)

It would be useful to predetermine whether the team will operate in a single round or multiple
rounds. Often, as the example below will illustrate, a team may issue a preliminary report and
then invite comments from constituents before issuing a final report. In this case, the team
would perform two rounds or even more if there is need for multiple iterations. In other
situations a single meeting or round is considered to be final. Therefore, this is another useful
aspect of team behavior from a modeling standpoint.

 20

4.3.6. Team instances (single/multiple)

A team may create instances of itself or sub-teams. Often large teams tend to break up their
work into sub-committees that perform various tasks and report to the team. The workflow
system should be able to provide support for such situations so that activities of sub-teams can
be coordinated with one another and with the entire team. This kind of sub-division of work
is usually done on an ad hoc basis.

The next section will tie together these ideas through a detailed example.

4.4. An example

There are several activities that involve considerable team operation. A conventional
workflow system would not be very effective in such situations. To illustrate, we consider the
workflow of how a tenure case is reviewed at a typical state university in America. The
various steps are as follows:

1. The department head appoints a fact-finding team (sub-committee) of three professors.
2. This task force or team reviews all the materials of the candidate, invites letters of

reference from external professors and past students, and based on a review of all the
documents, prepares a report. The task force also votes.

3. This report is shared with all the other tenured members of the department (including the
department chair) at least one week prior to a date when they all must meet.

4. A meeting of the tenured department members is held to discuss the case.
5. Afterwards, they cast their vote on the case in a secret ballot. A vote of 67% or more is

considered positive; otherwise, it is negative.
6. The department chair prepares his/her report independently without knowledge of the

department vote.
7. The next stage is the dean’s advisory committee (DAC), another team. This team consists

of four individuals who are appointees of the dean. They must meet with the dean to
discuss the candidate and give their vote to the dean. Here a vote greater than 50% is
considered positive.

8. The matter is reviewed by the college dean. If the DAC disagrees with the department
vote, the dean may at his/her discretion send the case back to the department for
reconsideration.

9. The dean writes his/her report and recommendation, and sends it to the vice-chancellor.
10. In the vice-chancellor’s office, it is first reviewed by the vice-chancellor’s advisory

committee (called VCAC - yet another team) that consists of eleven members.
11. The VCAC discusses the case and gives a recommendation to the vice-chancellor along

with a vote.
12. The vice-chancellor then makes a decision and sends it to the Chancellor.
13. There are three more levels that we will abbreviate: the Chancellor, the President and the

Regents (the last team!).

In addition there are various important constraints that apply to this workflow.

1. No individual may cast his/her vote at more than one time. The only exception is the task

force. If a member of the task force casts a vote in the task force and then once again, this
is allowed.

 21

2. No member may participate in the discussions at more than two levels of review.
3. At any level, the recommendation of the previous level may be overturned.
4. If a certain level disagrees with the recommendation of the previous level, it may at its

discretion send the matter back to the previous level for reconsideration.
5. There must be one tenured, full professor in the fact-finding committee. Similar

constraints related to committee composition apply at all levels.
6. The workflow must reach the office of the vice-chancellor by January 31 of the academic

year.
7. The candidate must be notified of the final decision latest by May 15 of the academic

year, i.e., the workflow must finish by this deadline.
8. At each stage there is a long checklist of tasks that must be completed before the

workflow can proceed.

Task Team or
Individual

Time/Place Decision
Type

Deadline Rounds

Appointment of
Task force

Individual Not applicable
(N/A)

Individual Not fixed 1

Task force report Fixed-size
Team

Diff./diff. Reporting of
anonymous
votes

Not fixed 1

Department
Meeting

Variable-
size Team

Same/same Discussion Not fixed 1 or
more

Department vote Variable-
size Team

Diff/diff. 67%
majority,
secret ballot

Not fixed 1 or
more

Chairman report Individual N/A Individual Not fixed 1 or
more

DAC meeting and
recommendation

Fixed-size
Team

Same/same 50%
majority,
partly secret

Not fixed 1 or
more

Dean Report Individual N/A Individual Jan 31 1 or
more

VCAC meeting &
recommendation

Fixed-size
Team

Same/same 50%
majority,
partly secret

Not fixed 1 or
more

VC decision Individual N/A Individual Not fixed 1
Chancellor
decision

Individual N/A Individual Not fixed 1

President
decision

Individual N/A Individual Not fixed 1

Regents decision Fixed-size
Team

Same/same 50%
majority,
public ballot

May 15 1

Table 1: Features of various steps in the tenure evaluation workflow process

It is evident that this important application requires considerable teamwork from start to end
because there are several team-based activities along the way. At each stage there are teams
of fixed and variable sizes involved along with constraints on how the teams should be
formed. Moreover, the decision-making criteria are also different. Table 1 summarizes this
workflow, showing the various steps in sequence, and gives the features of each task. For

 22

brevity two of the aspects mentioned in Section 4.3 (team task duration and team interaction
style) were omitted from Table 1.

4.5. Mapping Teams into our Framework

In this section we discuss how the tenure review example may be modeled using the
terminology introduced in Section 3. Table 2 shows the various teams that are required in
processing this workflow. Each row of this table shows the team_type, team_position, role
qualification, team, contribution, which are various entities shown in Figure 4 and discussed
in Section 3. Moreover, each contribution entity is linked to three entities, i.e., activity, team
position and resource. These are also shown in Table 2 along with two sample attributes of
Contribution, “Done?” and “Vote”, which denote whether a resource is done with his/her
contribution to the team task, and also what his or her vote was. Thus, Table 2 represents the
case or a workflow instance of “John Doe’s tenure review.”

As an example, the first team shown in Table 2 is the Special Task Force. This team has three
positions (one full professor and two professors of any rank). The instance of this team is the
task force for Dick Jones Tenure case. Further position 1 on this team is filled by the resource
Jim A. Similarly, the other two positions are also filled by suitable resources. The value for
Jim A. for the “Done?” attribute is ‘yes’ and for the “Vote” attribute is also ‘yes.’

Contribution Team_type Team
position/
Role/
Qualification

Team
(instance)

Activity Team
Position

Resource Attribute:
Done?

Attribute:
Vote

Special Task
force

1. Chair
2. Any Prof.
3. Any Prof.
(all tenured)

Task force for
John Doe’s
Tenure case

Task force
report and
vote

1.
2.
3.

Jim A.
Dawn B.
Jill M.

Yes
Yes
No

Yes
No
None

Department
Meeting

Prof 1
Prof 2
...
(All tenured)

Department team
for John Doe’s
tenure case

Dept.
Meeting
and vote

1.
2.
3.
.....

Mary C.
Diane M.
John. D.
....

No
No
No
.....

None
None
None
......

DAC meeting
and
recommend-
ation

1. Full Prof
2. Full Prof
3. Full Prof.
4. Full Prof.

Members of
Dean’s
Committee

DAC
meeting
and vote

1.
2.
3.
.....

Don L.
Jo M.
Chin D.
....

No
No
No
.....

None
None
None
......

VCAC
meeting &
recommend-
ation

11 Professors
from different
colleges

Members of
VCAC
Committee

VCAC
meeting
and vote

1.
2.
3.
.....

Sam P.
Mel C.
Su D.
....

No
No
No
.....

None
None
None
......

Board of
Regents

7 Elected
Regents

Members of
Board of Regents

Regents
vote

1.
2.
3.
.....

Jane C.
Jan M.
Mike D.
....

No
No
No
.....

None
None
None
......

Table 2: Work case for John Doe’s tenure review

Lack of support for teamwork is a major reason that it takes such a long time for various
workflows such as the one above to complete. We foresee that a team-enabled workflow
system can provide support by determining the appropriate members of a team and offer work
to them, managing work completion notifications by a team, verifying prerequisites, enforcing

 23

constraints, arranging team meetings, managing team documents, and provide support for
team activities. The last two items are important activities in themselves and there is already
an existing body of work in the area of groupware. Therefore, we devote the next section to
discuss our ideas on how groupware support can be integrated with a workflow system.

5. Team-enabled workflow management systems and the link with existing groupware
products

Previous sections have motivated the need for effective solutions to the problem of supporting
team-based workflow systems. We foresee a major need for a “marriage” between team
enabled workflow systems and groupware systems in order to realize the next generation of
workflow systems. This section will describe our vision for achieving such integration. The
area of groupware encompasses a variety of systems that fall in the general area Computer
Supported Cooperative Work (CSCW), a term coined by Irene Greif and Paul Cashman in a
pioneering 1984 Workshop. A brief overview of groupware systems follows first.

There is a large variety of groupware systems (see [21] for an introduction). The simplest
example of a groupware system is an electronic mail system or a bulletin board system such
as USENET. More sophisticated message-based systems are Lotus Notes, Novell Groupwise
and Microsoft Exchange. Another category of groupware systems is audio conferencing
systems based on MBONE [14] and Sun ShowMe from Sun, and video conferencing systems
like CU-SeeMe from Cornell University. There has also been considerable work in
developing groupware systems for electronic meetings to support brainstorming and decision-
making. These systems are often called Group Decision Support Systems (GDSS). Some
pioneering work in this area was done at the University of Arizona in the 1980s [9]. Another
well-known electronic meeting system is Object Lens from MIT [22]. Subsequent examples
of newer electronic meeting and decision support systems are Microsoft NetMeeting, Colab
from Xerox, etc. There are also toolkits for groupware development such as COAST [35] and
GroupKit [17] from the University of Calgary. See [38] for a more detailed and recent
survey. For some not-so-recent, but interesting, surveys and historical perspective, see
[12,19]. The systems where all participants interact in real-time are called synchronous
groupware systems and performance considerations (such as fast response time) are especially
important here. On the other hand, e-mail and messaging systems are examples of
asynchronous groupware.

An interesting classification of collaborative technologies is given in [13]. There Ellis
presents a taxonomy dividing collaborative technologies into four classes of functionality:

Keepers support the access and change to shared artifacts. Typical issues that are of
primary concern to keepers are access control, versioning, backup, recovery, and
concurrency control. Examples of keepers include the vault in a Product Data
Management (PDM) system, a repository with drawings in a CAD/CAM system, and a
multi media database system.
Coordinators are concerned with the ordering and synchronization of individual activities
that make up the whole process. Typical issues addressed by coordinators are process
design, process enactment, enabling of activities, and progress monitoring. The key
functionality of a workflow management system is playing the role of coordinator.
Communicators are concerned with explicit communication between participants in
collaborative endeavors. Typical examples are electronic mail systems and video

 24

conferencing systems, and basic issues that need to be addressed are message passing
(broadcast, multicast, etc.), communication protocols, and conversation management.
Team-agents are specialized domain-specific pieces of functionality. A team agent is
typically a system acting on behalf of a specific person or group and executing a specific
task. Examples include an electronic agenda and a meeting scheduler.

This classification assists in developing an approach for marrying team enabled workflow
systems with groupware systems. The functionality of workflow management systems is
usually limited to the coordinator role. On the other hand, groupware systems (i.e., excluding
workflow technology) tend to be weak on the coordination dimension, and stronger on the
keeper, communicator, and team-agent functions. Many groupware systems provide various
kinds of support for group decision-making, but they do not have any notions of workflow.
Lotus Notes is an exception, which does provide all four functions, but it is not a full-fledged
workflow system. For instance, a team does not know what action the previous team in the
workflow took. Therefore, it is important to link workflow and groupware technologies more
closely. We see groupware support as an add-on or plug in, whereby the workflow system
can determine the members of a meeting, along with time and place issues and hand over all
the relevant information for the meeting to the groupware system. The groupware system will
then arrange the meeting, record its decisions/recommendations, also keep text, audio, video
transcripts of the meeting and then send this information back to the workflow system. The
workflow system will then determine the next step for the specific workflow instance and
move the instance forward.

Workflow
System

Calendar

Video
support

Voting

E-mail

Meeting
Rooms

Groupware System

Perform team activity
(members, deadline, structure,
relevant documents)

Result of team activity
(recommendation, votes, transcripts)

Groupware
System
Database

Local
members

(participants)

Remote
members

(participants)

Internet
Document
management

Figure 5: Architecture for integrating groupware support into a Workflow system

Figure 5 proposes an architecture for integrating groupware support into a workflow system
for performing team activities. A groupware system has various standard modules such as a
calendar for scheduling, e-mail support, and video support. In addition it can keep track of
availability of meeting rooms. Some groupware systems also have modules for voting
support in order to determine the votes of the participants.

When a team activity is to be performed, the workflow system will make an asynchronous
call on the groupware system and provide details such as:

Names of specific team members to be included
Deadline for the completion of this meeting
Any documents the team may need to perform its work
Structure of the meeting (same/different time/place, video/audio/email)

 25

Quorum size (minimum number of participants)

After initiating the team activity, the workflow system may proceed with other tasks.
Meanwhile, the groupware system will arrange the appropriate kind of meeting based on the
schedules of the individuals, availability of meeting rooms, availability of video equipment,
etc. In addition, the groupware system will keep a log and transcripts of all meetings in multi-
media form (e.g., as video/audio transcripts and email text). It will also allow participants to
cast their votes and store the results. At the end of this activity, a person (perhaps a
coordinator, or chairperson) will inform the groupware support system that the activity is
finished. At this time, the system will notify the workflow system that the activity has been
completed and also return various information, such as all the transcripts, any new documents
prepared by the team, the results of any votes that were taken, etc.

As shown in the architecture, all relevant information such as documents, logs, transcripts,
results of votes, etc. would be stored in the database of the groupware system. Figure 5 also
shows that the members of a team may either be directly connected to the groupware system
or they may access the groupware system remotely over the Internet or even through another
network.

Although the various modules shown in Figure 5 exist independently, the integration is often
done manually, and not through a common interface. We, therefore, anticipate a two-phase
approach to such realization. In the first phase, the workflow system would send all the
information to a human coordinator. This coordinator would invoke various modules of the
groupware system to perform various tasks and, at completion, send all the information back
to the workflow system. This coordinator would also be responsible for ensuring that the
activity is completed within the specified deadline.

In time, however, the interface would be automated so that the workflow system may make
asynchronous API calls on the groupware system. These calls would allow the workflow
system to initiate a team activity as shown in Figure 5. Additional calls would check status of
the activity, modify an activity, cancel an activity, change membership, etc. Although a
detailed implementation is beyond the scope of this paper, we anticipate that a toolkit kind of
approach, such as Groupkit [17], would lend itself well for implementing our architecture by
combining various modules into a complete solution.

6. Conclusion
This paper started with the observation that team support is missing in contemporary
workflow management systems. Yet, there are numerous, real-world applications where tasks
are performed by teams. Therefore, effective support for team activities in workflow systems
is essential. Secondly, there is a great need for integrating groupware support within a
workflow system. Unfortunately, there is hardly any literature on the “marriage” between
team-enabled systems developed in the CSCW domain and workflow-enabled systems
developed by workflow vendors. Although there is a working group on resource modeling
(WG9), the Workflow Management Coalition (WfMC) did not consider activities executed by
teams. Both researchers and software developers in the CSCW domain have developed a wide
range of group support systems. These systems are team-enabled but do not explicitly model
the business processes and organizational structures. Therefore, these systems are unaware of
the workflow processes at hand and do not support the enactment of these processes. It should
be noted that systems like Lotus Domino Workflow (Lotus/IBM, [28]) allow for teams.
However, these systems use a so-called activity owner as a mediator between the workflow

 26

management system and the team members. The team member can share information
regarding the activity being executed. However, team positions within teams, requirements on
the size and structure of the team, and termination conditions involving voting are not taken
into account. The activity owner simply reports the completing of the task.

In this paper, we first proposed a reference model for making workflow management systems
team-enabled and then developed an architecture for integrating workflow and groupware
technologies. The reference model has been expressed in terms of a UML class diagram,
which we named the Team-enabled Workflow Reference Model (Figure 4). This reference
model is based on a core model involving standard concepts such as case, task, work item,
activity, role, qualification, position, competence and resource, and has been further extended
with team-specific concepts such as team, team type, team position and contribution. One of
the interesting features of this model is the presence of detailed OCL constraints. OCL allows
for the specification of generic (i.e., at the meta level) and specific (i.e., at the
organizational/process level) constraints. We illustrated how this reference model can be
applied to the case of the tenure evaluation process, an example application that requires
considerable amount of team activity, and one that many of our readers can relate to.
Finally, an architecture for integrating groupware support into a workflow system by means
of an API was discussed. In the Eindhoven Digital Laboratory for Business Processes [11],
we currently use the workflow management system Staffware [37] and the group support
system GroupSystems [18]. Both systems are used in several courses given at Eindhoven
University of Technology and have been used to build research prototypes. To demonstrate
the conceptual ideas in this paper, we plan to integrate Staffware and GroupSystems using the
team-enabled workflow reference model and the architecture presented in this paper.

Acknowledgments
Some part of the work on this paper was done while the second author was visiting Eindhoven
University of Technology, The Netherlands. He gratefully acknowledges support and
hospitality of the research institute BETA and the Faculty of Technology Management,
Eindhoven University of Technology. We would also like to thank the three reviewers for
their comments that helped to improve this paper.

7. References
1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The

Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.
2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced

Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th International
Conference on Cooperative Information Systems (CoopIS 2000), volume 1901 of Lecture
Notes in Computer Science, pages 18-29. Springer-Verlag, Berlin, 2000.

3. V. Atluri and Wei-kuang Huang. An Extended Petri Net Model for Supporting Workflows
in a Multilevel Secure Environment. DBSec 1996: 240-258.

4. V. Atluri, Wei-kuang Huang, and E. Bertino. An Execution Model for Multilevel Secure
Workflows. DBSec 1997: 151-165

5. E. Bertino, Elena Ferrari, and V. Atluri. The Specification and Enforcement of
Authorization Constraints in Workflow Management Systems. TISSEC 2(1): 65-104, 1999.

 27

6. C. Bussler and S. Jablonski. Policy Resolution for Workflow management. In Proceedings
28th Hawaii International Conference on System Sciences (HICSS’95) Conference, January
1995.

7. S. Castano and M. Fugini. Rules and Patterns for Security in Workflow Systems. DBSec.
59-74, 1998.

8. Cosa Corporation, http://www.cosa.de.
9. A. Dennis, et. al.. Information Technology to Support electronic meetings, MIS Quarterly,

12, 4 (December 1988), 591-619.
10.G. DeSanctis and B. Gallupe. A foundation for the study of group decision support

systems. Management Science, Vol. 33, No. 5, 1987, 589-609.
11.EDL-BP. Eindhoven Digital Laboratory for Business Processes.

http://tmitwww.tm.tue.nl/research/edlbp
12.C. Ellis, et. al.. Groupware: Some issues and experiences, Communications of ACM, Vol.

34, No. 1, January 1991, 38-58.
13.C. Ellis. An Evaluation Framework for Collaborative Systems. Technical report CU-CS-

901-00, Computer Science Department, University of Colorado, Boulder, 2000.
14. H. Eriksson. MBONE: The Multicast Backbone, Communications of ACM, Vol. 37, No.

8, August 1994.
15.D. F. Ferraiolo, J. Cugini and D.R. Kuhn: Role-Based Access Control: Features and

Motivation. In Annual Computer Security Applications Conference, IEEE Computer
Society Press, 1995.

16.M. Fowler and K. Scott. UML Distilled: Applying the Standard Object Modeling
Language. Addison-Wesley, New York, 1997.

17.Group Kit 1998, GroupKit 5.0 Documentation, University of Calgary,
http://www.cpsc.ucalgary.ca/projects/grouplab/groupkit/.

18.GroupSystems. GroupSystems.com/ Ventana Corporation. http://www.groupsystems.com
19. J. Grudin, “Computer-supported cooperative work: history and focus,” IEEE Computer,

Vol. 27, No. 4, May 1994.
20.IBM MQ Series workflow, http://www-4.ibm.com/software/ts/mqseries/workflow/.
21.S. Khosafian and M. Buckiewicz. Introduction to Groupware, Workflow and Workgroup

Computing, Wiley, 1995.
22.L. Kum-Yew, et, al. Object Lens: A spreadsheet for cooperative work, ACM Transactions

on Office Information Systems, Vol. 6, No. 4, October 1988.
23.S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture,

and Implementation. International Thomson Computer Press, 1996.
24.P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John

Wiley and Sons, New York, 1997.
25.L. Mandel and M.V.Cengarle. On the Expressive Power of OCL. In World Congress on

Formal Methods, 854-874, 1999.
26.M. zur Mühlen. Resource Modeling in Workflow Applications. In: Becker, Zur Mühlen,

and Rosemann: Workflow Management 99. Proceedings of the 1999 Workflow
Management Conference. Muenster, Germany, November 9th 1999, Münster, 137-153,
1999.

http://tmitwww.tm.tue.nl/research/edlbp
http://www.cpsc.ucalgary.ca/projects/grouplab/groupkit/
http://www.groupsystems.com/
http://www-4.ibm.com/software/ts/mqseries/workflow/

 28

27.M. zur Mühlen. Evaluation of Workflow Management Systems Using Meta Models. In R.
Sprague, Proceedings of the 32nd Hawaii International Conference on System Sciences
(HICSS’99). 1999.

28.S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze and J. Roele. Using Lotus Domino
Workflow 2.0. Redbook SG24-5963-00. IBM, Poughkeepsie, 2000.

29.M. Nyanchama and S.L. Osborn. The Role Graph Model and Conflict of Interest. ACM
Transaction on Information and System Security (1): 3-33, 1999.

30.Rational Software. Object Constraint Language Specification, Version 1.1, Sept. 1997.
31.M. Richters and M. Gogolla. On formalizing the UML object constraint language OCL. In

T.W. Ling, S. Ram, and M.L. Lee, editors, Proc. 17th Int. Conf. Conceptual Modeling
(ER'98). Springer, Berlin, LNCS 1507, 1998.

32.J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1998.

33.R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-Based Access Control
Models. IEEE Computer 29(2): 38-47, 1996.

34.R.S. Sandhu, V. Bhamidipati, and Q. Manuawer. The ARBAC97 Model for Role-Based
Administration of Roles. ACM Transactions on Information and System Security,
2(1):105-135.

35.C. Schuckmann, et. al., Designing object-oriented synchronous groupware with COAST,
Proceedings of the ACM 1996 Conference on Computer Supported Cooperative Work,
page 30-38, November 1996, Boston.

36.R. Simon and M.E. Zurko, Separation of Duty in Role-based Environments. Proceedings
of the 10th Computer Security Foundations Workshop (CSFW '97) 183-194.

37.Staffware. Staffware PLC. http://www.staffware.com
38.S.Terzis, et. al., “The future of enterprise groupware applications,” In Enterprise

Information system (J. Filipe, editor), Kluwer Academic Publishers, 1999.
39.J.B. Warmer and A.B. Kleppe. The Object Constraint Language: Precise Modeling with

UML. Addison-Wesley, 1999.
40.S. Wu, A. Sheth, and J. Miller: Task and Role Combined Access Control Model for

Workflow Systems, University of Georgia, Technical Report, 2000.

http://www.staffware.com/

 29

Appendix: Meta model

 30

Bio sketches

Wil M.P. van der Aalst is a full professor of Information Systems and head of the
Department of Information and Technology of the Faculty of Technology Management of
Eindhoven University of Technology. He is also a part-time full professor at the Computing
Science department of the same university and has been working as a part-time consultant for
Bakkenist for several years. His research interests are information systems, simulation, Petri
nets, process models, workflow management systems, verification techniques, enterprise
resource planning systems, computer supported cooperative work, and interorganizational
business processes.

Akhil Kumar is currently a visiting researcher at Bell Labs, Murray Hill, NJ, on leave from
University of Colorado, Boulder, where he is on the faculty of the College of Business. He
holds a Ph.D. in Information Systems from University of California, Berkeley. In the past, he
has served on the faculty at Cornell University and also worked in industry. He has published
nearly fifty scholarly papers in top journals and leading international conferences in the
database, and distributed and intelligent information systems areas. His current research
efforts are focused in workflow systems and electronic commerce.

	Introduction
	Workflow management and organizational models
	Workflow management concepts
	Organizational meta model
	Modeling organizational constraints with OCL
	Generic OCL constraints
	Specific OCL constraints

	Adding teams to organizational workflow models
	The team concept
	Overview of Organizational meta model extended with teams
	Modeling constraints for the team-enabled model in OCL
	Specific OCL constraints

	Team Allocation Mechanisms
	Offering work to a team as opposed to an individual
	Receiving confirmation of work completion from a team
	Attributes or dimensions for modeling team behavior
	Time/Place
	Decision criterion/Quorum size
	Team task duration (Time out/No time out)
	Team interaction style (Structured/ad hoc)
	Rounds (single/multiple)
	Team instances (single/multiple)

	An example
	Mapping Teams into our Framework

	Team-enabled workflow management systems and the link with existing groupware products
	Conclusion
	References

