
Enterprise Workflow Resource Management

Weimin Du and Ming-Chien Shan

Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94304

1 Abstract

Resource management is a key issue in providing
resource independence and efficient use of
workflow resources. The paper has outlined a
design of such a resource management system
for enterprise workflow environments. It is
capable of handling a large number of workflow
resources that are independently managed by
pre-existing resource systems. It integrates these
external resource systems at schema level
without duplicating individual resource
information. Resource specification is greatly
simplified by providing process designers with
integrated views of enterprise workflow
resources at different levels based on a unified
resource model. Dynamic behaviors of workflow
resources are supported through powerful
resource policies.

2 Introduction

Workflow is a technology that provides the
ability to define the flow of work through an
organization to accomplish business tasks. A
workflow process involves the coordinated
execution of tasks performed by workflow
resources (e.g., a person, a computer-based
application, or a piece of equipment). One of the
important features of modern workflow
technology is the dynamic resource allocation,
which provides resource independence to
business processes. Thus, a business process
does not need to be modified when underlying
workflow resources change. It also allows more
efficient utilization of available resources.
A resource manager is a component of a
workflow system that allows run time resource
allocation. A resource manager provides a
resource model to process designers for resource
specification at process definition time. The
model provides an abstraction of the physical
resources and shields the process designers from
the detailed specification of the resource

required. A resource manager also manages
workflow resources (e.g., keeps track of status of
workflow resources) and assigns workflow
resources to business steps (or workflow
activities) when requested by the workflow
execution engine. Resource management is an
important and complicated task, especially in
enterprise workflow environments.
An enterprise workflow system (such as HP
Changengine [4]) is a workflow system that is
capable of supporting large number business
critical processes in an efficient, reliable and
secure way. Resource management in an
enterprise workflow system has the following
characteristics.
• The number of workflow resources can be

very large. For example, the employee
expense reimbursement processes in HP
involve (>100,000) HP employees as
workflow resources.

• Workflow resources at different
organizations and locations are often
managed by different systems
independently. These external resource
systems can be heterogeneous with respect
to resource models, query languages and
communication protocols.

• Process designers need different views of
workflow resources at different levels. Most
business processes only involve local
resources. There are also cases where an
enterprise-wide view of all workflow
resources is needed.

• A company or an organization may need to
enforce certain rules regarding resource
usage. For example, the 2nd line manager
approval is required for all expenses over
$500. The rules may change from time to
time according to business conditions.

Resource managers of most existing workflow
products do not meet the above requirements.
For example, the resource management
component of IBM FlowMark [5] requires
explicit registration of all workflow resources.
This not only makes it practically impossible to

handle large number of resources, but also
causes potential inconsistency between the
external resource systems and the internal
workflow resource system.
This paper describes the design of a Resource
Manager for enterprise workflow management
systems. The described resource manager allows
integration of existing resource sources and
external resource monitoring components. The
resource manager also includes a policy engine
(and an accompanying policy definition
language) to allow flexible resource management
[3]. The paper describes the architecture that
facilitates integration of external resources. It
also describes a unified resource model and a
resource definition/query language to allow easy
resource specification at process definition time.

3 Architecture

3.1 Overall Hierarchy

Workflow resources at different organizations
and locations are often managed by different
systems independently (e.g., a database or a
corporate directory). These systems were built by
different organizations for different purposes and
used different resource models and technologies.
It is thus useful to present unified and integrated
views of all workflow resources to process
designers for processes involving multiple
external resource systems. We distinguish
between Local Resource Managers (or LRMs)
that pre-exist and have their own resource
models and communication protocols and Global
Resource Managers (GRMs) that represent
integrated views of part or all of the underlying
LRMs. GRMs have the same resource model
and communication protocol.

 E R M

 S R M 1 S R M 2 S R M 3 S R M m

L O C A L R E S O U R C E M A N A G E R S

Figure 1: Hierarchy of Resource Managers

Since enterprise workflow resources can be
widely distributed across organizational and
physical boundaries, resource management is
distributed. To support different views of
enterprise workflow resources, GRMs are further
subdivided into Enterprise GRMs (or ERMs) and
Site GRMs (or SRMs). ERMs represent the
enterprise-wide view of workflow resources and
interface with underlying SRMs, which represent
partial views of workflow resources within an
organization or a physical boundary. There can
be more than one level of SRMs representing
different levels of views, forming a tree
hierarchy with ERMs as roots. There can also be
more than one copy of a GRM, all representing
the same view of a set of workflow resources, to
provide fault tolerance. GRMs at the same level
represent views in different organizations or
physical boundaries, and are also the integrated
views of their subordinate GRMs. The lowest
level SRMs represent imported and possibly
integrated views of one or more external LRMs.
A three level hierarchy of resource managers is
outlined in Figure 1.

3.2 System Architecture

All the SRMs and the ERMs have the same
following architecture, which is shown in Figure
2. The GRM has four different layers: the
interface layer, the policy manager and resource
model layer, the request processing engine layer,
and finally the integration layer.

Interface Layer

Policy Manager and Resource Model

Request Processing Engine

Integration Layer

Resource Policy Language Resource Design Language Resource Query Language

Policy Base Organizational Resource Model RM Catalog

Query Routing Query Execution Planner Query Result

Advertising
Mechanisms Wrapper Manager Subquery Translation

Subquery Result
Packaging

RM-RM
protocol

Admin
APIs

Security
APIs

Figure 2: GRM Architecture

3.2.1 Interface Layer
This layer allows other components like the
workflow engine to send requests to the resource
manager. The requests are written in RQL

(Resource Query Language)1. This layer allows
tools speaking RPL (Resource Policy Language)
and RDL (Resource Design Language) to
manipulate the policies and the underlying
resource model. The layer is also used for
communication between other GRMs. Finally,
this layer defines the administrative APIs and
uses the underlying security mechanisms.

3.2.2 Policy Manager and Resource Model
This layer implements the policy rules and the
resource model (that provides the enterprise view
of resources). This layer also provides a database
(RM Catalog) with an extensible schema that is
used to store model and historical information
and may be used to store other information
needed for resource management (i.e. load
information for load balancing, etc.).

3.2.3 Request Processing Engine
The Request Processing Engine takes the actual
request (after it has been processed by the policy
engine) and routes them to the appropriate
information source. It also assembles all the
results that are returned by the information
sources.

3.2.4 Integration Layer
The integration layer manages all the different
protocols spoken by local information sources
(i.e., LRMs). It allows for the LRMs to be
advertised. It handles the request and any result
translations required. It also manages the
wrappers that need to go around each LRM.

3.3 Component Interactions

The interaction diagram for the GRM is shown
below in Figure 3. The languages are described
in Sections 5. There are three main components
to the GRM. The first is the resource manager
language interface. It contains the parsers for the
resource manager languages as well as a control
engine, which controls the process of resolving a
resource request. The other two components are
the policy engine and the resource engine.
When a resource request comes in to the
resource manager, it is first parsed by one of the
three language parsers. A resource request is
forwarded to the control engine, which performs
the following five-step process:

1 See Section 5 for brief descriptions on RQL,
RPL and RDL.

• If the request cannot be handled by this
particular GRM (or the GRM is not
authoritative), then the control engine uses
the RM-RM protocol (described later) to
pass the request on to another GRM.

• If request can be handled then the control
engine passes the request to the policy
engine component for query rewrite2.

• After the policy enforcement, the request is
forwarded to the resource engine. If a
particular resource is found to satisfy the
request, the control engine component
returns the result as appropriate.

• If the resource engine returns NULL, then
the request is sent to the policy engine,
where substitution policies are applied.

• The request is again sent to the resource
engine. If a resource is found, then the result
is returned. If the request is still not satisfied
and the resource manager has authority over
the resource type, then a NULL is returned.

Events

Resource Manager Language(s)

Resource Policy
Language

Resource Design
Language

Resource Query
Language

RM-RM

Interface

Common Advertising

Policy Engine
Policy &
Resource
Schema

Query Translation
Result

Query Translation
Result

SQL LDAP

RQL

Security &

Admin Interface

RQL
Parser

RDL
Parser

RPL
Parser

Control Engine

Resource Engine

Discover
Model

Query
Processor

Policy
Processor

RQL
Rewriter

SLP

Figure 3: Interaction Diagram

A resource engine has a resource model
associated with it, which contains a hierarchical
collection (based on capabilities) of concepts
representing resource types. A resource model
defines static behaviors of resource types (e.g.,
things they can do) and the relationships among
them. Dynamic behaviors and relationships
(e.g., a resource is only allowed to do a task

2 Readers are referred to [3] for detail of query
rewrite by policy manager.

under certain conditions) are specified using
policies. For each type of resources, the resource
model maintains knowledge of “where” to get
instances of that type.
The discovery model component “discovers”
local resource managers and the types of
resources that they can handle. The query
processor in the resource engine makes use of
the discovery model to generate sub-queries
(possibly multiple) for the LRMs. These sub-
queries are then dispatched to the LRMs where
the wrappers convert the request (in RQL) into
something that is understood by the LRM. A
client can talk directly to the resource engine to
modify the resource model using RDL. The
resource schema is stored in a database, which is
shared with the policy engine.
The policy engine takes requests from the control
engine and rewrites the request based on
applicable policies. The policy engine also
manages the collection of policies, which are
stored in a database shared with the resource
engine. Policies can be added or updated by
using the Resource Policy Language.

4 Resource Model

The resource model is a hierarchical collection of
resource types. A resource type is intended to
denote a set of resource instances with the same
capabilities. The resource hierarchy shows
resources organized into types. Figure 4 shows a
possible resource hierarchy. Each of the types in
the hierarchy has a list of capability attributes,
which represent its capabilities. Furthermore, a
resource type inherits these capabilities
(attributes) from its parents. For example, in
Figure 4, a Programmer inherits all of the
capabilities of the Engineer. In fact, a
Programmer is an Engineer with some special
capabilities.
The hierarchy of resources is built using the
capability attributes. These attributes represent
capabilities or states of resource types that are
inherited lower in the hierarchy. A resource type
may also contain attributes that are applicable
only to it. Resources lower in the hierarchy do
not inherit these non-capability attributes.
The resource types can be created using a subset
of UML. Using UML as a modeling language
allows us to make use of existing UML tools in
the market today. The UML representation can
then be turned into code (again using existing
tools) for better performance. The codified
resource type can be compiled directly with the
codified protocol above to get optimal

performance.
Resource

Employee Hardware

Engineer Adm Computer Peripheral

Programmer Manager Secretary

SoftwareUnit

Analyst

Figure 4: Resource Hierarchy

To allow flexible resource specification in
process definition, the GRM also contains
knowledge of roles as well as resource types.
Roles are logical representations of resource
requirement for workflow activities in terms of
capabilities. Roles are used by activity definers
(when creating new activities) to map activities
into resources. Roles are a boolean expression
specifying the resource types needed for the
activity. Given this information, the resource
manager automatically generates virtual nodes
(shaded nodes in Figure 5 below). For example,
assume that the activity definer defines two roles
R1 and R2 for activities A1 and A2 as follows:
• A1: {Role: R1 = {Peripheral and Software}}
• A2: {Role: R2 = (Programmer and Analyst)

and (Computer or Secretary)}}
Figure 5 shows how the above roles would be
incorporated into the resource model. R1 can be
modeled very simply as inheriting from both
Peripheral and Software. R2 requires the
definition of two “virtual” resources R2a and
R2b. R2a represents a set of resources that are
either Computers or Secretaries. R2b represents
resources that are both Programmers and
Analysts. Finally, R2 represents an “and-ing” of
R2a and R2b. This method allows for complex
boolean expressions of resource types to be
expressed in the resource model. The virtual
nodes can themselves have additional attributes
that can be used during the search process.
The connections between virtual nodes and
resource types are labelled to enable the late and
early binding of resources. For example, in the
example of Role R1, the link between R1 and
Peripheral might be labelled for late binding.
When a request for Role R1 comes to the
resource manager, the request would get
rewritten by the appropriate policies. The request
would not be sent to the LRMs, though.
The virtual nodes (roles) also consist of rules that

are used to determine the relationships between
the resource types that they represent. Consider a
virtual node called SecureContact which
represents a Manager resource type and a secure
WorkListHandler. In other words, if one needed
to send secure work to a Manager, they would
use the SecureContact role. But the resource
manager would need rules to determine how to
get (and in which order) the WorkListHandler
etc. These rules are only stored in the virtual
nodes and thus are only associated with Roles
(not resource types).
Role definitions would also need to be merged
into the resource model. This should be possible,
again using UML. Once role knowledge is
represented in the model, one can query GRMs
based solely on roles.

Resource

Employee Hardware

Engineer Adm Computer Peripheral

Programmer Manager Secretary

SoftwareUnit

Analyst

R2

R1

R2a

R2b

 and

or

Figure 5: Resource Hierarchy with Extended
Roles

5 Design

5.1 Languages and Interfaces

The following simple languages have been
defined for resource definition, query and
manipulation:
1. Resource query language (RQL) – RQL is

an SQL like language. Users can use the
language to submit resource requests to the
resource manager. The language is
composed of SQL select statements
augmented with optional activity
specifications (for clauses).

select R2b
from SRMn

where Location = ‘PA’
for Programming
with NumberOfLines = 35000
and Location = ‘Mexico’;

The query requests resources of role R2b
from the SRMn with additional condition that
resources should be located at ‘PA’. The
resources are for activity Programming of
35,000 lines of code and of Location
‘Mexico’. Note that the select clause may
contain either a resource type (e.g.,
Programmer) for simple workflow activities
that only require a single resource, or a role
specification (e.g., R2b) for complex
activities that require multiple resources. For
resource specification in a workflow
activity, only select clause is mandatory
(from the system-wide or the process-wide
default resource managers).

2. Resource Policy language (RPL) – RPL
allows managers/supervisors to define
resource policies. There are two types of
polices: requirement policies and
substitution policies. A requirement policy
defines additional conditions a resource
must satisfy in order to perform a given
workflow activity, while a substitution
policy specifies possible substituting
resources for a given workflow activity in
case the originally specified primary
resource is not available. They are discussed
in more detail in [3].

3. Resource definition language (RDL) –
RDL allows for graphical modeling and
manipulation of resource groups.

There are three additional interfaces for resource
management:
• Security interface – interface which allows

each GRM to use the given security
architecture.

• Administration API – an API which allows
the administration and configuration of the
GRM.

• RM-RM protocol – a set of messages that
allows one GRM to contact another GRM.
This interface can allow for decentralized
resource management and may allow for
the use of a foreign router by putting an
appropriate wrapper around it.

5.2 RM-RM Protocol

There are four types of message that a GRM can
send to another GRM: Plead, Delegate, Refer,
and Report. These messages are shown in the
Figure 6 below. Note: Do is not really part of the
RM-RM protocol, since an SRM by definition
can access LRMs.
• Plead: Used by a GRM to send a request up

to a higher level GRM.
• Delegate: Used by a GRM to send a request

down to a lower level GRM.
• Refer: A GRM can cache information about

other GRMs that are horizontally positioned.
As we will see, the cache does not have to
be consistent.

• Report: A response sent back to the original
GRM where the request originated. Used to
create and update cache entries at the
original GRM.

2 3

4 5 6

L1 L2 L3 L4 L5

Delegate

Do

Plead

Report

1

Refer

Figure 6: RM-RM Protocol

This protocol can be simplified for three levels
of resource management. With three levels of
resource management, the top level ERMs can
either Delegate or they can Do (satisfy) the
request. The second level of SRMs can Plead,
Refer or Do (satisfy) a request. This is shown in
Figure 7, where a request comes in to SRM2. In
the simplest case (shown in red), SRM2 can
satisfy the request and does so by using LRM1

In the second case (shown in blue), SRM2 does
not know how to satisfy the request so it pleads
up to ERM1. ERM1 maintains high level
information about which SRMs can satisfy what.
ERM1 delegates the request to SRM3. SRM3 uses
LRM2 to satisfy the original request and replies
directly back to SRM2 using the Report message.
SRM2 can create a cache entry to send all
requests of this type directly to SRM3.
In the third case (shown in green), SRM2 receives
a request and uses its cached entry to send the
request to SRM3 using the Refer method. But
SRM3 cannot handle the request (i.e., invalid
cache entry). SRM3 might also have a cache entry
for the request, but because it was called using a
Refer, it Pleads the request up to ERM1. Note, if

SRM3 were to use its cached entry on a Refer call
this could lead to messy loops with inconsistent
caches; therefore, SRM3 pleads the request. An
additional consequence of this is that we do not
have to implement any cache consistency
protocols. ERM1 delegates the request to SRM4

which satisfies the request and Reports directly
back to SRM2. At this point, SRM2 can updates
its cached entry.
The ordering of how these messages are called
can be quite important. The following ordering
results in optimal performance.
• A resource manager first attempts to Do or

satisfy the request.
• If this fails, the GRM attempts to Delegate

the request to another GRM (in a three level
design, only ERMs can delegate).

• The GRM attempts to use its cached entries
and tries to Refer the request to another
GRM.

• Finally, it Pleads the request up one level (in
a three level design, only SRMs may Plead
requests).

LRM1

Request

Reply

ERM1

plead delegate plead

delegate

do

refer

report

report
do

do

SRM2 SRM3 SRM4

LRM2 LRM3

Figure 7: Use of RM-RM Protocol

Note that there are popular protocols used by
LRMs. The integration layer (mentioned in
Figure 2) manages the interfaces to the LRMs.
Some of the more common interfaces might be
SQL, LDAP [6], and CORBA Trader [7].

5.3 Consistency Issue

The resource model is loosely consistent among
all the resource managers. This means that at any
given instant in time, there might be GRMs that
do not have the same model as some other
GRMs. But over time, all GRMs will have the
same resource model. This can be accomplished
through the use of protocols such as SLP [8].
One exception to the above statement of loose
consistency is the consistency of the model
between the SRM and its parent GRM. If the
model is changed in one of the SRMs, then the
parent GRM(s) are immediately notified. The
models in the other SRMs can be updated over
time. This is required because other SRMs will
be pleading requests up to the parent GRMs and
they need to have a complete, consistent
knowledge of the world.
The SRM models can be subsets of the ERM
models. For example assume there are two
SRMs (SRM1 and SRM2) and they both plead up
to ERM1. Using the model in Figure 4, assume
that SRM1 can satisfy requests of type Hardware
but does not have any knowledge of any other
resource types. If asked for any resource type
other than Hardware, SRM1 pleads the request
up to ERM1. Further assume that SRM2 can
satisfy requests of Employee type (and all its
subtypes). It would be acceptable for SRM1 to
have the following sub-model:

Resource

Employee Hardware

Computer Peripheral

SoftwareUnit

Figure 8: Sub-Model in an SRM

If a request for an Engineer came to SRM1, it
would plead the request up to ERM1. ERM1

(since it contains the complete consistent
resource model) would know how to handle
Engineer resources and delegate the request to
SRM2. SRM2 would then report the result directly
back to SRM1. SRM1 could update its model and
cache when it received the result from SRM2. In
this way the model in SRM2 could be built up
over time. In summary, the SRM models are
loosely consistent and are built up over time
whereas the ERM model is complete and
consistent.

6 Conclusions

Resource management is a key issue in
providing resource independence and efficient
use of workflow resources. The paper has
outlined a design of such a resource management
system for enterprise workflow environments. It
is capable of handling a large number of
workflow resources that are independently
managed by pre-existing resource systems. It
integrates these external resource systems at
schema level without duplicating individual
resource information. Resource specification is
greatly simplified by providing process designers
integrated views of enterprise workflow
resources at different levels based on a unified
resource model. Dynamic behaviors of workflow
resources are supported through powerful
resource policies.
This work is done in the context of OpenPM [1],
a workflow research project at HP Labs that has
resulted in Changengine [4], HP’s current
generation of workflow product.

7 Reference

1. J. Davis, W. Du, and M. Shan. OpenPM: An
Enterprise Process Management System,
IEEE Data Engineering Bulletin, 1995.

2. W. Du, G. Eddy, M. Shan, and J. Davis.
Distributed Resource Management in
Workflow Environment, Proc. of the 5th Int.
Conf. on Database Systems for Advanced
Applications, Melbourne, Australia, April
1997.

3. Yan-Nong Huang and Ming-Chien Shan.
Policies in a Resource Manager of
Workflow Systems: Modeling, Enforcement
and Management, Technical Report HPL-
98-156, Sept. 1998.

4. HP. Introduction to HP Changengine, HP
Product Document,
http://www.hp.com/go/changengine.

5. IBM. Modeling Workflow: Version 2
Release 3, IBM FlowMark Document, 1996.

6. LDAP. Understanding LDAP,
http://www.redbooks.ibm.com/SG244986/4
986fm.htm.

7. OMG. Trader Object Services Specification,
ftp://www.omg.org/pub/docs/formal/97-12-
23.pdf.

8. SLP. Service Location Protocol White
Paper,
http://playground.sun.com/srvloc/slp_white_
paper.html.

