
Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Event log imperfection patterns for process mining: Towards a systematic
approach to cleaning event logs

S. Suriadia,⁎,1, R. Andrewsa, A.H.M. ter Hofstedea,b, M.T. Wynna

a Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Australia
b Eindhoven University of Technology, Eindhoven, The Netherlands

A R T I C L E I N F O

Keywords:
Process mining
Data mining
Data quality
Event log quality
Patterns
Systematic data pre-processing
Event log preparation

A B S T R A C T

Process-oriented data mining (process mining) uses algorithms and data (in the form of event logs) to construct
models that aim to provide insights into organisational processes. The quality of the data (both form and
content) presented to the modeling algorithms is critical to the success of the process mining exercise. Cleaning
event logs to address quality issues prior to conducting a process mining analysis is a necessary, but generally
tedious and ad hoc task. In this paper we describe a set of data quality issues, distilled from our experiences in
conducting process mining analyses, commonly found in process mining event logs or encountered while
preparing event logs from raw data sources. We show that patterns are used in a variety of domains as a means
for describing commonly encountered problems and solutions. The main contributions of this article are in
showing that a patterns-based approach is applicable to documenting commonly encountered event log quality
issues, the formulation of a set of components for describing event log quality issues as patterns, and the
description of a collection of 11 event log imperfection patterns distilled from our experiences in preparing
event logs. We postulate that a systematic approach to using such a pattern repository to identify and repair
event log quality issues benefits both the process of preparing an event log and the quality of the resulting event
log. The relevance of the pattern-based approach is illustrated via application of the patterns in a case study and
through an evaluation by researchers and practitioners in the field.

1. Introduction

In today's information systems, it is not uncommon for the
execution of processes to leave historical traces recorded in many
forms, including audit trails, system logs, databases, and paper-based
records. Both data mining and process mining analytics exploit such
historical data to uncover useful information relevant to the domain
about the systems and processes from which the historical data is
collected. Process mining, as an emerging research discipline, aims at
utilising information in event logs to discover, monitor and improve
processes [45]. Though emerging, process mining has already been
conducted in many organisations in a variety of domains. For example,
Mans et al. [24] identified 40 scholarly papers that report on applica-
tions of process mining (33 focusing on process discovery and 7 on
process conformance) in various areas of health care. Process mining
has yielded promising outcomes in painting evidence-based, end-to-
end views of processes including: the actual manner in which processes
were carried out; the (non-)conformance of processes to guidelines/
regulations/legislation; performance and bottlenecks; and the identifi-

cation of pain points to facilitate targeted and effective process
improvement initiatives.

The truism garbage-in garbage-out is as relevant to process
mining as it is to other forms of computerised data analysis. In process
mining, the ‘in’ is an event log, so it is important to prepare the event
log such that it is fit for the purpose of the analysis. The preparation of
event logs necessarily involves cleaning raw data sources from noise
with the aim of minimising information loss and producing an event
log that is of ‘high quality’, i.e. the event log is valid in the context of the
domain from which the raw data was collected and is valid for the
purpose of the analysis (see Fig. 1). Where such is the case, the data
itself is not an impediment to the analysis producing a model that
agrees with reality.

In this paper we point out that process mining event logs have some
unique data quality considerations that can be dealt with through the
use of a patterns-based approach. The use of patterns as a means of
understanding, and communicating the characteristics of an apparently
chaotic domain is a fundamental human behaviour and has been
widely applied in diverse areas, including business analysis [13],

http://dx.doi.org/10.1016/j.is.2016.07.011
Received 16 October 2015; Received in revised form 6 July 2016; Accepted 21 July 2016

⁎ Corresponding author.

1 Some of this work was done while the author was employed at Massey University, New Zealand.
E-mail addresses: s.suriadi@qut.edu.au (S. Suriadi), r.andrews@qut.edu.au (R. Andrews), a.terhofstede@qut.edu.au (A.H.M. ter Hofstede), m.wynn@qut.edu.au (M.T. Wynn).

Information Systems 64 (2017) 132–150

0306-4379/ © 2016 Elsevier Ltd. All rights reserved.
Available online 30 September 2016

crossmark

http://www.sciencedirect.com/science/journal/03064379
http://www.elsevier.com/locate/is
http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1016/j.is.2016.07.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.07.011&domain=pdf

software design [15,52] and systems security [22]. The benefit of using
a patterns-based approach is that it allows core solutions to recurring
problems to be developed and, most importantly, applied over and over
again [3]. The main contributions of this article are showing that a
patterns-based approach is applicable to documenting commonly
encountered event log quality issues, the formulation of a set of
components for describing event log quality issues as patterns, and
the description of a collection of event log imperfection patterns
distilled from our own experiences in preparing event logs that capture
some specific, commonly-encountered event log data quality issues.
The impact of the presence in an event log of each imperfection pattern
in terms of the data quality dimension(s) most severely impacted is also
explained. We show how checking for the ‘signatures’ of these patterns
in an event log can reveal the existence of the associated quality issues
and inform appropriate remedial action(s). The patterns thus form a
knowledge repository facilitating a systematic approach to event log
preparation that is independent of the type of analysis to be performed
with benefits to both the process of preparing the log and the quality of
the resulting log.

Whilst advocating for the use of patterns, we, like other pattern
collection authors [15,8,14], acknowledge that the pattern collection
described in this paper cannot be deemed to be complete (i.e. in our
case, to offer coverage of all possible quality issues that may afflict an
event log). Indeed, it is not even possible to determine the degree of
coverage afforded by this pattern collection to the spectrum of possible
problems that may afflict an event log, as it not possible to absolutely
determine the complete set of such problems. Thus, even if none of the
patterns manifest in a log, it is not certain that the log is 100% correct.
We maintain however, that the patterns provide a way to check for
some commonly occurring, and from a process mining perspective,
high priority issues, which, when systematically and routinely ad-
dressed, provides a ‘ground level’ quality assurance and allows
researchers and practitioners to devote effort to uncovering domain
and log specific quality issues. As more patterns are included in the
collection, the ‘ground level’ quality will naturally rise. Lastly, we refer
to Martin Fowler, another (highly cited) patterns author, who in [14],
with regard to completeness, states in relation to his Enterprise
Application Architecture patterns collection: “This pattern collection
is by no means a comprehensive guide to enterprise architecture
development. My test for this book is not whether it's complete, but
merely if it's useful.”

The remainder of the paper is organised as follows. In Section 2 we
consider event log basics, patterns basics and some previously pub-
lished views on data quality from an information systems and process
mining point of view. In Section 3 we discuss work related to data
cleaning including some process mining-specific approaches. In
Section 4 we describe a process mining-focused data quality framework
[6] that may be used to classify quality issues of a process mining event
log. Sections 5 and 6 contain the main contributions of this paper. In
Section 5 we propose a set of 11 event log imperfection patterns
distilled from our own experiences in preparing event logs. Examples
provided in Section 6 illustrate the use of the patterns via their

application in a case study. Section 7 presents an evaluation, by
practitioners in the field, of their recognition of, and perceived
importance and usefulness of the patterns.

2. Background

Event logs used in process mining have a structure designed to
allow representation of key attributes of events that occurred over
multiple executions of a given process. These event logs may then be
presented to a process mining algorithm with the aim of analysing and
mapping the process (discovery), determining the extent to which
actual execution of the process agrees with the intended execution
(conformance) or highlighting areas for improvement in the process
(enhancement) [44]. Irrespective of the specific type of analysis, it is
true that the success of the analysis depends on the quality of the data
used in the analysis. In this section we describe the characteristics of an
event log and, with the notion of garbage-in garbage-out in mind,
review some existing notions of data quality. We also describe patterns
as a mechanism for describing commonly encountered problems and
solutions, pattern languages as a structured method for describing
patterns and discuss previous applications of patterns in different
domain settings.

2.1. Event log basics

An event log suitable for process mining contains data related to a
single process. The event log consists of a set of cases (or traces) and is
constructed as a case table in multiple record-case format (see Fig. 2).
Each case consists of the sequence of events carried out in a single
execution of a process (process instance). Each unique sequence of
events from the beginning to the end of a process instance is referred to
as a variant. Each case/trace belongs to exactly one variant. A variant
may describe one or more cases/traces. Cases within a log are uniquely
identified by a case identifier. Irrespective of the type of process mining
analysis undertaken, each event is minimally characterised by a case
identifier which informs the case to which the event relates, and an
‘activity’ label describing the related ‘action’. Many process mining
analyses, e.g. process discovery, require an attribute that allows
ordering of events, e.g. a timestamp describing when the event
occurred. Other types of analysis require that the log contains relevant
supporting attributes. For instance, it is not possible to discover the
social network of resources contributing to the process unless event
data is enriched with resource information.

To conduct a process mining analysis, an event log needs to contain,
at minimum, enough information such that every activity can be
ascribed to a case and can be ordered via, for example the timestamp.
Often, the final event log is made up of data captured in multiple raw
source logs extracted from different systems used in supporting the
process being analysed. In this paper, we draw a clear distinction
between the final, cleaned event log and the contributing raw source
logs.

Definition 2.1 (Attribute, Event, Event Log). Let be the event
universe, i.e. the set of all possible event identifiers. Events may be
characterised by various attributes, e.g. an event may belong to a

Fig. 1. Garbage-in Garbage-out: the need for data and results validation.

Fig. 2. Event log fragment.

S. Suriadi et al. Information Systems 64 (2017) 132–150

133

particular case, have a timestamp, correspond to an activity, and can be
executed by a particular person.

Let AN a a a= { , ,…, }n1 2 be a set of all possible attribute names. For
each attribute a AN∈i (i n1 ≤ ≤), ai is its domain, i.e. the set of all
possible values for the attribute ai.

For any event e ∈ and an attribute name a AN∈ : e# () ∈a a is the
value of attribute named a for event e. If an event e does not have an
attribute named a, then e# () = ⊥a (null value).

Let id be the set of event identifiers, case be the set of case
identifiers, act be the set of activity names, time be the set of possible
timestamps, and res be the set of resource identifiers. For each event
e ∈ , we define a number of standard attributes:

• e# () ∈id id is the event identifier of e;

• e# () ∈case case is the case identifier of e;

• e# () ∈act act is the activity name of e;

• e# () ∈time time is the timestamp of e; and

• e# () ∈res res is the resource who triggered the occurrence of e.

An event log ⊆ is a set of events. This definition of an event log
allows the log to be viewed as a table, thus allowing the application of
relational algebra to the log.

2.2. Data quality dimensions

In order to assess the quality of an event log, it is necessary to define
a model of quality suitable to process mining. The literature contains
many data quality models, most of which relate to information systems
in general and do not deal directly with specific requirements of
process mining. Data quality is frequently discussed in the literature
as a multi-dimensional concept. Wand and Yang [48] summarise the
results of a literature review [49] according to the most cited quality
dimensions. They further categorise these dimensions according to
whether they relate to the ‘external’ view of an information system
(which is concerned with the purpose of the information system) or the
‘internal’ view (which addresses the construction and operation of the
information system necessary to meet the external view needs as
defined by a set of requirements and business rules). Their quality
dimensions are: Completeness (all lawful states in the real-world
system can be represented in the information system); Unambiguity
(no two states of the real-world system should be mapped into the
same state in the information system); Meaningfulness (all states in
the information system can be mapped back to a state of the real-world
system); and Correctness (during operation, all real-world states are
mapped to the correct information system state, i.e. mapping the
information system state back to the real-world system results in the
‘correct’ real-world system state).

Batini and Scannapieco [5] define at least the following dimensions
for data quality: Accuracy (a measure of the closeness between a
recorded value and the real-life phenomenon that the recorded value
aims to represent). Accuracy is further broken down into (i) Syntactic
accuracy the closeness of a recorded value to the elements of the
corresponding definition domain, and (ii) Semantic accuracy the
closeness between a recorded value and the true value. Here semantic
accuracy corresponds with the concept of correctness; Completeness
(“the extent to which data are of sufficient breadth, depth and scope for
the task at hand” [50]); Consistency (“captures the violation of
semantic rules defined over (a set of) data items”); Currency,
Timeliness & Volatility (dimensions concerned with “change and
updates to data in time”); and Synchronisation between different time
series (“concerns proper integration of data having different time-
stamps”).

The ISO/IEC 25012 standard [1] aims to define a “general data
quality model for data retained in a structured format within a
computer system”. The standard defines data quality as “the degree
to which the characteristics of data satisfy stated and implied needs

when used under specified conditions” and categorises quality attri-
butes into fifteen characteristics from two different perspectives:
inherent (the data itself) and system dependent (the ways in which
data is “reached and preserved within a computer system”).

Some of the characteristics defined in the standard are: Accuracy
(the degree to which data correctly represent the true value of the
intended attributes of a concept or event in a specific context of use).
The standard also considers accuracy from syntactic and semantic
points of view; Completeness (data have values for all expected
attributes and related entity instances in a specific context of use);
Consistency (data are free from contradiction and are coherent with
other data in a specific context of use); Credibility (users regard data as
believable/reliable in a specific context of use); and many others.

2.3. Patterns basics

In the late 1970s, Christopher Alexander's The Timeless Way of
Building [2] and A Pattern Language: Towns, Buildings, Construction
[3] introduced the notion of a pattern as a means of describing
problems (and their solutions) commonly faced in our built environ-
ment. In [3], Alexander provides the rationale for using patterns as
“Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over without ever doing it the same way twice”.

Since then, Alexander's pattern concept has made its way into many
disciplines. The highly cited work by the so-called “Gang of Four” [15]
is credited with initiating interest in design patterns for use in object-
oriented programming. In Fowler's works on analysis patterns [13] and
enterprise architecture patterns [14], the author makes the point that
patterns are not contrived by “academic invention” but rather dis-
covered from experience. This point is reinforced by Grady Booch in
the foreword to [4]. Also in [4], the authors cite the Rule of Three
where a solution becomes a pattern after it has been verified in three
different systems.

Our principal aims in writing this article are manifold. Firstly, we
wish to propose patterns as a novel way of considering data quality
issues that may be encountered in process mining event logs. Secondly,
we wish to discuss the notion, at a conceptual level, in such a way that it
is accessible to a broad cross-section of the process mining community.
We also aim to raise awareness among practitioners of the patterns-
based approach to event log quality issues with the hope that it would
stimulate practitioners to verify the existence of the patterns in their
own data sets. In [46], the authors state that a pattern description
needs to strike a balance between generality and precision. A textual/
graphical representation is a convenient, language and implementation
independent representation that promotes awareness and makes
patterns easily understandable without overwhelming the reader with
technical considerations. Further, such a presentation style does not
impose strict semantics on the patterns, (thereby limiting their
generality). To the best of our knowledge, this is the first work
describing the application of patterns to event log quality issues. As
such, and in keeping with other germinal pattern articles [15,13,47] we
felt that a discursive, rather than formalised style was better suited to
achieving these particular ends. Other widely read pattern collections
that use informal, component based descriptions can be found in
[3,15,13,14,19,47].

Our final aim for this article was to show that patterns could form
the basis of a systematic approach to cleaning event logs. As Fowler
says, “conceptual models are only useful to software engineers if they
can see how to implement them” [13]. A mathematical and logical
formulation can address issues of ambiguity in textual/graphical
descriptions and assist researchers and designers reason about solution
issues [42,52]. Accordingly, for each pattern in the collection, we
include a ‘lightweight’ formal specification. Going beyond this level of
specification is, we believe, outside the scope and intent of this paper.

S. Suriadi et al. Information Systems 64 (2017) 132–150

134

3. Related work

In this section, we review previous work relating to data quality for
process mining analyses. In particular, we focus our related work
section on advances within the process mining community that (i) raise
the issue of event log quality, and (ii) propose methods to overcome
event log quality problems (including noise removal). For complete-
ness, we also, briefly, bring into the discussion existing work within the
data mining community in general and argue why such approaches are
not applicable to address the needs of process mining.

The issue of event log quality has been raised quite some time ago.
The Process Mining Manifesto, [45], defines a star rating (1-star to 5-
star) of the maturity of event logs where maturity refers to readiness for
process mining analysis. The authors state that event logs rated as 3, 4
or 5-star are suitable for process mining analysis, while 1- and 2-star
rated logs are probably not suited for use in a process mining analysis.
A 5-star rated log (excellent quality, trustworthy and complete) is
characterised as being recorded automatically, systematically and
reliably with all events and their attributes having clear semantics. At
the other end of the scale, 1-star rated logs (poor quality) are
characterised as having events that do not correspond to reality and
may be incomplete (i.e. missing events). Such logs often result from
manual recording of data. With this rating system in mind, we contend
that the data imperfection patterns proposed in this article capture
some of the issues typically found in lower-rated event logs. By
applying the remedies for each data imperfection pattern (also
proposed in this article), we hope to allow the community to be able
to improve the quality of event logs in general.

Bose et al. [6] identify four broad categories of issues affecting
process mining event log quality: Missing data (where different kinds
of data are missing from the event log); Incorrect data (data is
provided, but, based on contextual information, is logged incorrectly);
Imprecise data (where logged entries are too coarse); and Irrelevant
data (where logged entries are irrelevant as is, but may be used to
derive relevant entities through filtering, abstraction or some other pre-
processing). The authors then show where each of these issues may
manifest themselves in the various entities of an event log. A distinc-
tion between our work and the work proposed in [6] is that our event
log imperfection patterns, while more or less falling within Bose et al.'s
four broad categories of data quality issues, explore and highlight event
logs problems at a more detailed level. In particular, we propose a
concrete manifestation of typical event log quality issues that are
commonly found in industry-based logs informed in large part through
our experiences in conducting analyses in healthcare [35,40] and
insurance [41] domains.

Mans et al. [25] propose a process mining data spectrum to classify
event data generated by different types of systems generally found in a
Hospital Information System (HIS). The authors observe that a HIS
comprises of a mixture of information processing systems designed for
different purposes and used in different ways. Some systems, such as
administrative systems, record services delivered to patients, often for
billing purposes. However, the issue here is that data is often entered
manually and is generally performed some time after the service has
been delivered to the patient. While coarse-grained and imprecise
recording of timestamps (often at the day level granularity) is not an
issue for administrative purposes, it is mostly too coarse for process
mining analysis purposes. Nevertheless, the knowledge of how such
systems are being used forms the basis of some of our event log
imperfection patterns and their remedies (e.g. the collateral events and
scattered events patterns detailed in Section 5). Other systems, such as
medical devices, automatically record information about the state of
the devices as well as the task being performed in a fine-grained
manner (milliseconds). Event logs from such devices are, on the other
hand, often too fine-grained for process mining analyses as there could
be hundreds if not thousands of events recorded for even a very short
period of time. Nevertheless, the knowledge of the data provenance in

this case also forms the basis of data imperfection patterns (e.g. the
elusive case and the synonymous labels patterns detailed in Section 5).
Overall, the work by Mans et al. [25] describes event log quality as a
two-dimensional spectrum with the first dimension concerned about
the level of abstraction of the events and the second one concerned
with the accuracy of the timestamp. The latter dimension is divided
into three sub-dimensions (i) granularity, (ii) directness of registra-
tion (i.e. the currency of the timestamp recording) and (iii) correctness.
In this work, the spectrum is used in the context of a case study to
elaborate on the data challenges faced in a process mining analysis and
whether event data collected from HISs allows for answering questions
frequently posed by medical professionals in a process mining analysis.
Our data imperfection patterns (proposed in this article) do cut across
these dimensions proposed by Mans et al. [25]; however, as stated
before, our approach explores the issue of event log quality at a much
finer-grained level by proposing concrete manifestations of data issues
that are, theoretically at least, semi-automatable in terms of their
detection and correction.

Where event logs contain no exceptional data and noise, process
mining algorithms can discover accurate models and can extract useful
process-related insights. However, the presence of exceptional data
(noise) in the event log leads to unnecessarily complex discovered
models that do not accurately reflect the underlying process. In [18], in
describing various types of noise that may be encountered in an event
log, the author firstly refers to work in [51] on syntactic noise before
introducing the notion of semantic noise. Here syntactic noise arises
from errors in logging and includes such things as missing head, tail or
episodes of traces and the inclusion of so-called alien events within
traces. Semantic noise, the author contends, is introduced to the log on
purpose through either decisions made about which events are logged
(resulting in noise classed as imbalance between event importance and
granularity), or decisions made about customisations to the support-
ing information system or modifications made to the relevant process
model. The author indicates that syntactic noise may be alleviated
through careful extraction and pre-processing of log data, customisa-
tion noise may be addressed through semantic pre-processing, e.g. the
use of an ontology to map different customisations, and the employ-
ment ofmodification-aware mining algorithms to detect and deal with
both evolutionary and ad-hoc modifications. Within the process
mining community, various techniques, many based on the statistical
notion of outlier detection, have been proposed to discover and remove
noise. In [27,16] and [9], frequency-based approaches to detecting
noise are proposed. In [27], the frequencies of direct-follow and
eventual-follow events are used as input to machine learning techni-
ques that are used to induce association rules for causal and exclusive/
parallel relations between events in the log. In [16], the authors firstly
mine for frequently-occurring patterns that can be used to characterise
traces in the log and then use a cluster-based outlier identification
approach to identify traces that hardly belong to any of the computed
clusters i.e. traces that do not follow any of the frequent behaviours
evident in the log. By contrast, in [9], the authors describe an approach
that detects and automatically removes noise at the direct-follow event
level. Here an event log is firstly modeled as an automaton that
captures all direct-follow relations in the log. Arcs in the automaton
that represent low frequency event transitions are pruned from the
automaton. The log is then aligned with the automaton and those
events not fitting the automaton are deemed ‘outliers’ and removed
from the log. The work by Rogge-Solti [39] can be seen as exploiting
mathematically-based models to repair event logs. In this work, the
author uses a type of stochastic Petri net [26] to reason about path
probabilities from which ‘predictions’ about the most likely missing
events can be made. Furthermore, the authors also use Bayesian
network modeling [32] to compute the most likely timestamps for
these missing events. We argue that while the approaches proposed by
these authors to discover usable process models from noisy event logs
are theoretically founded, the reliance on the concept of statistical

S. Suriadi et al. Information Systems 64 (2017) 132–150

135

outlier may very well result in rather ‘sterile’ event logs in which
interesting events, which may be of great interests to domain experts,
have been inadvertently removed. This raises the issue of the validity of
event logs as depicted in Fig. 1. On the other hand, the data
imperfection patterns proposed in this article do take into account, to
a certain extent, the broader state of the event log as a whole before
suggesting remedial actions. In fact, our data imperfection patterns
apply and extract rules for data cleaning that are informed by
experiences of process mining analysts themselves. The main advan-
tage of using data imperfection patterns as the first step of data
cleaning exercises is that we may still retain interesting events that
may have otherwise been lost using statistical-based approach.

Within the general data mining community, the issue of data
quality has been rather extensively discussed as proven by the plethora
of literature in this field, such as, to name a few, the work by Kim et al.
[20], Gschwandtner et al. [17], Rahm and Do [37], Müller and Freytag
[31], Oliveira et al. [34], and Batini and Scannapieco [5]. Nevertheless,
we contend that the nature of event log used in process mining is
distinct from the nature of the data that is typically used in data
mining. Process mining uses an event log as the starting point of
analysis. A distinct characteristic of an event log is that there exists
temporal constraints among events, both from a case perspective and a
resource perspective: the former restricts the types of actions that can
be executed at any given point in time (as they are dependent on the
completion of the preceding activities), while the latter restricts who
and when an activity can be executed depending on resources avail-
ability and capability. Consequently, each row in an event log (i.e. an
event) has temporal relationships with other events, either through
resource or case constraints. This is in contrast to other types of log
typically used in traditional data analytics (such as data mining or even
basic spreadsheet analysis) whereby the concept of case or resource
temporal constraints does not exist. (In process mining, the data is
structured as multiple-record cases, whereas in data mining, the data is
structured as single-record cases.) Therefore, while we appreciate the
richness of work in this domain, the distinct characteristics of the event
log require us to address event log quality issues differently. Having
said that, it is part of our future work to incorporate and extend
existing data cleansing work from the traditional data mining domain
to repairing event logs.

4. Process mining data quality framework

It is clear that while there exist many conceptual overlaps in the
various quality frameworks, there is no consensus on either the set of
dimensions that constitute a data quality framework or the definition of
the individual dimensions. Further, as stated in the preceding section,
it is clear that there are significant differences between the data in an
event log and data derived from a typical information system. These
differences are unrecognised in today's literature on data quality. The
need to deal with temporal data dependencies in process mining opens
up new notions of ‘quality’. It follows that a data quality framework for
process mining will be somewhat different from any data quality
framework so far proposed for information systems. For instance, in
the Process Mining Manifesto [45], with reference to the quality of
events, the authors state

“Events should be trustworthy, i.e., it should be safe to assume that
the recorded events actually happened and that the attributes of
events are correct. Event logs should be complete, i.e., given a
particular scope, no events may be missing. Any recorded event
should have well-defined semantics. Moreover, the event data
should be safe in the sense that privacy and security concerns are
addressed when recording the events. For example, actors should be
aware of the kind of events being recorded and the way they are
used.”

In this paper we adopt the quality framework described by Bose
et al. [6] and summarised in Table 1 below, to classify the quality issues
arising from the presence of the data imperfection patterns (in an event
log) described in this paper. By way of explanation, consider the quality
issue I3 - Missing data, relationship. This refers to the situation where
it is not possible to associate an event with its case (process execution
instance) because the case identifier is missing from the event record. A
fundamental requirement of process mining is that events can be
associated with cases. Where this is not the case, a process mining
analysis is not possible. A complete description of each quality issue
can be found in the related technical report referenced in [7].

5. Event log imperfection patterns

Inspired by the problems that one may encounter in transforming
raw data source logs into an event log that is ‘clean’ and usable for
process mining analysis, we extract a set of event log imperfection
patterns commonly encountered in pre-processing raw source logs.
The use of patterns as a means of understanding, and communicating
the characteristics of an apparently chaotic domain is a fundamental
human behaviour. The pattern approach is used in diverse areas
including software design [15,52], workflow functionality [47], security
[22], insider threat protection [30,29,28] and architecture/town plan-
ning [3]. Our rationale for adopting the pattern approach to event log
cleaning is neatly summed up in [3] where the authors state that each
pattern in a set “describes a problem which occurs over an over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice”.

We accept the definition of a pattern in [38] as “the abstraction
from a concrete form which keeps recurring in specific non-arbitrary
contexts” and argue that the use of patterns provides a basis for the
systematic investigation of event logs for the presence and remediation
of data quality issues that will negatively impact a process mining
analysis. The patterns described here come from our own experiences
in preparing event logs from raw sources and occurred frequently
enough and are sufficiently generic (non-analysis specific) to warrant
abstraction as a pattern. We provide detailed descriptions for each of
the event log imperfection patterns that we propose, including the
manifestation of the pattern within an event log, its detection, the
affected data quality dimension(s) (as described in Section 4), the effect
of the imperfection pattern on subsequent process mining analyses,
remedial action for the detected imperfection, and, for some patterns,
the side effects of the remedial action. We also provide a formal
description of the manifestation of each pattern.

Table 1
Manifestation of quality issues in event log entities [6].

Event log entities

Case Event Relationship Case attrs. Position Activity name Timestamp Resource Event attrs.

Event log quality issues Missing data I1 I2 I3 I4 I5 I6 I7 I8 I9
Incorrect data I10 I11 I12 I13 I14 I15 I16 I17 I18
Imprecise data I19 I20 I21 I22 I23 I24 I25
Irrelevant data I26 I27

S. Suriadi et al. Information Systems 64 (2017) 132–150

136

Table 2 shows, the dimension(s) of the quality framework affected
by each log imperfection pattern. In our pattern collection, event log
imperfection patterns are described using the following components:

• Description: outline of the pattern and how and where the pattern
may be introduced into a log

• Real-life Example: example of the pattern drawn from practical
experience

• Affect: consequence of the existence of the pattern on the outcomes
of a process mining analysis

• Data Quality Issues: type of data error and the event log entities
affected by the pattern

• Manifestation and Detection: strategy to detect the presence of the
pattern in a log

• Remedy: how the pattern may be removed from a log

• Side-effects of Remedy: possible, undesirable consequences of
application of the remedy

• Indicative Rule: formal description of the way the pattern may be
detected in a log.

The indicative rule is structured to illustrate the general conditions
under which the pattern may manifest in the log, i.e. the indicative rule
is not meant to exhaustively describe all possible manifestations of the
pattern. Further the rule only indicates that the pattern may be present
in the log but does not address the pervasiveness of the pattern (extent
to which the log is affected by the pattern). The indicative rule also
serves to distinguish between patterns that, at some level of general-
isation, could be seen as similar. For instance, both form-based event
capture and the collateral events patterns manifest similarly in the log
(multiple events recorded with similar timestamps). Their respective
rules reflects the different contexts associated with each pattern's
manifestation and detection. For example, form-based event capture
typically manifests as multiple events with similar completion times,
while collateral events typically manifests as multiple events with
similar created times.

Pattern. Form-based Event Capture
Description. This pattern may occur where the data in an event log

is captured from electronic-based forms (e.g. a patient test results
form). Users (such as nurses and doctors) click a ‘Save’ button to
trigger the recording of the data captured by the form, often with the
undesirable side effect of associating all data captured by the form with
the same timestamp (the time the user clicked the ‘Save’ button). The
more interesting information about the ordering of activities from
which the values of the data inserted into the forms were derived, such
as the time a blood sample was taken, is flattened into one timestamp.
This method of data recording can result in an additional problem.
When the form is updated at some point in the future, the system may
actually store all data captured by the form again, even though only a
few data items were actually changed. As a result, the log data stored by
such a system contains redundant information due to the fact that

some data items in the form were not changed but were re-recorded in
the storage with a new timestamp (the time when the update event
happened).

Real-life Example. We encountered this data imperfection pattern
in event logs extracted from a number of Australian-based hospitals.
An example of such a log is provided in Table 3.

Here, the first three events have the same timestamp. Furthermore,
we know that these three events were derived from a form-based
system because the first event, named ‘Primary Survey’, is the name of
the form that was being used. A similar observation can be made for the
last four events.

Affect. This imperfection pattern ‘flattens’ the temporal ordering of
events as they are all assumed to have happened at the same time
resulting in the actual ordering of events being lost. Ignoring this data
pattern may result in the discovery of complex process models as all
events sharing the same timestamp in a case will likely be treated as
parallel events, and consequently, be modeled in a parallel manner.
Modeling parallel events graphically tends to increase the number of
arcs (and the often unavoidable cross-cuttings of arcs) in the models,
thus making them difficult to comprehend. Finally, this imperfection
pattern may produce unnecessary duplication of events as certain
events may be re-recorded as a result of the updates of a few other data
items within the same form. This situation is likely to result in the
extraction of misleading process mining analysis results due to the
existence of events in the log that did not actually happen.

Data Quality Issues. I16 – Incorrect data: timestamp, I27 –

Irrelevant data: event – The temporal flattening introduced into an
event log through the occurrence of this pattern negatively impacts the
attribute accuracy of the log in that the timestamps of the events reflect
the saving of the form rather than the performance of the event.
Further, if the system records all fields on the form rather than only
those fields that have changed, the trace completeness may be affected
through erroneous inclusion of events that did not actually happen in
the case.

Manifestation and Detection. This pattern's signature is the
existence of groups of events in a log with the same case identifier
and timestamp value. The signature of this pattern can be detected by
searching the event log for groups of events with the same case
identifier and timestamp value. Alternatively, the log can be searched
for the presence of ‘marker’ events with activity names similar to field
labels known to exist on the same form (assuming that such informa-
tion about the forms can be obtained from system users). If found, the
timestamps of the ‘marker’ events can be checked to see if they are the
same. Regardless, the regular occurrences of groups of events that
share the same timestamp value is already a good indication of the
presence of the ‘Form-based Event Capture’ pattern.

Remedy. The simplest remedial action is to aggregate all events,
within each group of events having the same timestamp, into one event
only. An additional attribute can be created for this event with a
complex data structure to capture relevant data from the aggregated
events. This approach removes all other events that have been recorded
from one form, thus reducing the amount of parallelism in the
discovered models. However, such a remedy can only be applied if it

Table 2
Relationship between individual patterns and quality framework.

Pattern Quality issue(s)

Form-based Event Capture I16, I27
Inadvertent Time Travel I6
Unanchored Event I23, I6
Scattered Event I2
Elusive Case I3
Scattered Case I12
Collateral Events I27
Polluted Label I15, I17
Distorted Label I15
Synonymous Labels I15
Homonymous Label I22

Table 3
An example of the ‘Form-based Event Capture’ pattern.

CaseID Event Timestamp Description

ID1 Primary Survey 2012-11-23 15:42:38 ……….
ID1 Airway Clear 2012-11-23 15:42:38 ……….
ID1 ………. 2012-11-23 15:42:38 ……….
ID2 Primary Survey 2012-11-24 09:58:33 ……….
ID2 Airway Clear 2012-11-24 09:58:33 ……….
ID2 ………. 2012-11-24 09:58:33 ……….
ID2 Procedure 1 2012-11-24 09:58:33 Completed on

2012-11-24 06:58:34

S. Suriadi et al. Information Systems 64 (2017) 132–150

137

is sensible to represent the information collected from the form as one
process step. For example, if all events with the same timestamp reflect
nothing more than a nurse performing various types of medical checks
on a patient where all of those checks fall under the umbrella of ‘vital
signs checks’ activity, then we can aggregate them into one event
named ‘Vital Sign Checks’. However, if those events with similar
timestamps contain two or more distinct and/or important process
steps that need to be explicitly considered in the analysis, important
information may be lost through simple events aggregation. Instead,
each group of events will need to be aggregated into two or more events
reflecting the distinct steps taken. These aggregated events, will
however, still share the same timestamp.

From the process mining case studies in which we have been
involved, the following interesting ‘variant’ of the ‘Form-based Event
Capture’ pattern has been observed. There is a set of events with the
same timestamp and case identifier (e.g. case identifier ‘ID2’ in
Table 3), however, the relevant event timestamp information was
actually recorded in a column that is different from the ‘timestamp’
column. The last row of Table 3 depicts this scenario whereby the form
recorded a ‘Procedure 1’ event, but the actual timestamp regarding the
completion of the procedure was recorded within the ‘Description’ field
itself. In this situation, we were able to partially sequentialise the
events by using the information extracted from the ‘Description’
column. A more complex situation occurs when there is an update to
only some data items of a form, triggering the recording of a new set of
events, each with the same timestamp (some of which may be duplicate
events because their values did not require any updates). Properly
addressing this scenario requires firstly an understanding of how
updates are recorded in the event log. There are two situations: (i)
the updates of one or more data items in a form result in the recording
of all fields as events in the log, or (ii) the updates of one or more fields
in a form will result in the recording of only those fields whose values
have changed. In the former case, it is necessary to identify the specific
information that has changed. In both cases, it is important to note
what process step(s) may have taken place in order for the data items in
the forms to be updated, and then aggregate those changed data items
into one or more events as needed.

Side-effect of Remedy. Where a process requires a form update, it
may be the case that, for a given activity, the ‘new’ value of a data item
is the same as the ‘old’ value of the data item. Where the form logging
mechanism writes out all data values in the form, the fact that the ‘old’
and ‘new’ values of the data item are the same makes it difficult to
determine whether the activity was carried out a second time or the
data item was simply re-written as part of the form update process. In
this scenario, we may lose the ‘update’ action on those fields where
‘new’ values and ‘old’ values are the same.

Indicative Rule. Let ⊆ be an event log, AN be a set of attribute
names found in and a be the set of all possible values of a AN∈ .
Let caseid AN∈ be the case identifier attribute and case be the set of
possible case identifiers in log . Let time AN∈ be the event time-
stamp attribute and time be the set of possible timestamps in log .
Here we make use of the extension operator χ defined in [43] that
extends a relational expression to include a new attribute representing
the count of rows. The form-based event capture pattern may be
present in if there exists a non-empty set of timestamps that have
multiple events recorded. That is, if:

• σ χ caseid time count(, { , },)count θ> is not empty, where θ is some
significance level that reduces the likelihood of returning instances
where unrelated events are recorded coincidentally.

Pattern. Inadvertent Time Travel
Description. This pattern captures the situation where certain

entries in a log are recorded with an erroneous timestamp due to the
‘proximity’ of the correct data value and the incorrect data value. Here
‘proximity’ refers to a situation where two timestamp values are so

close to each other that human error can inadvertently result in
incorrect timestamp values to be recorded.

A typical example of a proximity error pattern is the recording of
incorrect timestamps for events that happen just after midnight. Often,
the date portion of the timestamp is incorrectly recorded as the date of
the previous day, while the time portion of the timestamp is recorded
correctly. Another example of this pattern is the recording of incorrect
timestamps of events due to users simply pressing the wrong key(s) on
a keyboard i.e. inadvertently pressing keys adjacent to the intended
key(s).

Real-life Example. We found this pattern in data from an
Australian hospital emergency department where most data entry
was performed manually.

An event log sample including this pattern is provided in Table 4,
and is illustrated in Fig. 3. Here the event ‘Arrival first hospital’
occurred as the first event in the case. However, common sense would
dictate that an injury event precedes being sent to a hospital. Notice
that if the date of the ‘Arrival first hospital’ activity is changed to ‘2011-
09-09 00:30:00’, the event would be reordered and become the second
activity of the case making the trace appear more believable as the
‘Arrival first hospital’ activity then occurs after the ‘Injury’ event.

Affect. The existence of this pattern will result in incorrect models
being discovered as the models are likely to allow behaviours that did
not occur in reality. This pattern will also impact the accuracy of time-
related performance analysis results (e.g. working time and waiting
time), although the impact may not be serious if such patterns occur in
only a relatively small number of cases.

Data Quality Issue. I16 – Incorrect data: timestamp – The
incorrect timestamp values introduced into an event log through the
occurrence of this pattern negatively impacts the attribute accuracy of
the log in that the temporal ordering of the events no longer reflects the
actual ordering of events.

Manifestation and Detection. The pattern typically manifests itself
by the existence of a number of cases in which event ordering deviates
significantly. That is, given two activities a1 and a2 with a strict
temporal ordering property such that a1 should always occur before
a2, there exists at least a case with two events with activities a1 and a2
with incorrect ordering. We call these two events the misplaced events.
Furthermore, once such sequence(s) of misplaced events are discov-
ered, it is necessary to go back to the log and test if, by changing the
timestamps for those misplaced events (according to some known
rules), those events can be ‘placed’ back to their proper ordering in the
context of the overall trace. If this is the case, it is quite reasonable to
say that such a pattern exists in the log. For example, consider a
process with only three sequential activities A, B, and C. If the log
contains a trace with the following event ordering: A (2011-09-25
21:56:23), B (2011-09-25 00:23:11), and C (2011-09-26 01:34:56), the

Table 4
An example of the ‘Inadvertent Time Travel’ pattern.

Episode ID Activity Timestamp …

ID1 Arrival first hospital 2011-09-08 00:30:00 ……….
ID1 Injury 2011-09-08 23:47:01 ……….
… …. …………. ……….
ID1 Operation 2011-09-09 16:30:00 ……….

Fig. 3. An illustration of the ‘Inadvertent Time Travel’ pattern.

S. Suriadi et al. Information Systems 64 (2017) 132–150

138

discovered process model will have an arc from B to A, and from A to C.
However, in the domain, the ‘ground truth’ is that B can only occur
after A and before C. If the date component of the timestamp of B is
modified from ‘25’ to ‘26’, activity B will be in the proper order. In this
scenario, the ‘Inadvertent Time Travel’ pattern exists in the event log.

Remedy. Addressing this pattern in a generic manner requires
knowledge of the minimum restrictions applicable to the ordering of all
activities in the log. With this knowledge, each trace in the log can be
examined to identify the existence of traces that violate the minimum
ordering restrictions. Once discovered, the timestamp of events in the
traces that violate the ordering restriction can be ‘fixed’ by applying
various remediations for standard proximity errors (e.g. adding or
subtracting one day from the timestamp, or flipping the value of the
timestamps based on proximity of the keys in a standard keyboard
layout). If one of those fixes re-orders the events in the trace such that
the trace no longer violates the ordering restrictions, the erroneous old
timestamp value should be replaced with the new value. Otherwise, it
may be that the original timestamp value does not suffer from the
‘Inadvertent Time Travel’ pattern after all (though the value may still
be incorrect).

Indicative Rule. Let ⊆ be an event log, AN be a set of attribute
names found in and a be the set of all possible values of a AN∈ .
Let case be the set of all case values in , time be the set of possible
timestamps in log , act be the set of all activity values in and
⊏⊆ ×act act be a strict partial order.

The inadvertent time travel pattern may be present in log if there
exists events e1 and e2 such that:

• e e# ()=# ()case case1 2 ∧ e e# () < # ()time time1 2 ∧ e e# ()⊏# ()act act2 1

Pattern. Unanchored Event
Description. This pattern refers to a situation where the timestamp

values of an event log are recorded in a format that is different from
that which is expected by the tools used to process the event log.
Consequently, the loading of the event log into those tools will result in
incorrect interpretation of timestamp values. Typical format variations
include the confusion between month-day vs. day-month format, the
use of colon (‘:’) symbol vs. dot (‘.’) symbol to separate between hour,
minute, and second information, and the varying manner in which
timezone information is encoded. This pattern is likely to occur when
the event log is constructed from multiple sources.

Real-life example. This pattern is commonly encountered while
conducting data pre-processing. For example, Table 5 (top-part) shows
a sample of a few events that we received from an Australian hospital.
The original timestamps were presented in day-month-year format.
These events were then imported into a database which expected
month-day-year format during import. The first three events of the
original data set were imported incorrectly using the month-day-year

format without causing parsing errors due to the ambiguity of the
values. That is, the original dates are: 1st September 2013, 2nd
September 2013, and 12th November 2013. Here, as the ‘day’ portions
of the timestamps do not go beyond the number “12”, they can be re-
interpreted as the value for the ‘month’ component without causing a
parsing problem. The first three imported events have the timestamp
values interpreted incorrectly as 9th January 2013, 9th February 2013,
and 11th December 2013.

Note that the last event of the original data with the timestamp of
14th November 2013 was imported correctly as the day portion of the
timestamp (which is ‘14’) is unambiguous: it has to refer to a day, not a
month. Therefore, the timestamp for the event ‘Discharge letter’ was
imported correctly. It is worth noting that, despite the apparent
inconsistencies in the formats of the original timestamps, no warnings
were issued by the database during data import. This lack of warning
could easily be missed by analysts, especially when one deals with
millions of events.

Affect. Incorrect timestamp values will adversely affect process
mining results. From the example given in Table 5, it is not difficult to
see how a process model discovery exercise for example, may output
process models that are substantially different from reality in both
event ordering and case duration.

Data Quality Issues. I23 – Imprecise data: timestamp, I16 –

Incorrect data: timestamp – The incorrect timestamp values intro-
duced into an event log through the occurrence of this pattern
negatively impacts the attribute accuracy of the log in that the temporal
ordering of the events no longer reflects the actual ordering of events.

Manifestation and Detection. This pattern generally manifests itself
when processing an event log. Some tools produce error messages
when used to load an event log with an incompatible timestamp format.
However, tools, such as Microsoft Excel, are quite ‘relaxed’ in the way
they parse timestamp information (as they often have built-in intelli-
gence to detect the correct timestamp format) and may not produce any
warning or error messages, although the data may have been loaded
incorrectly. If the latter, the detection of this data imperfection is more
difficult. This pattern may also be detected through the discovery of
process models with unexpected, and often incorrect, ordering of
activities and the extraction of unreasonably long or short working
and/or waiting times. Another indicator is the existence of missing
timestamp information across many events in the log – due to the tool
not being able to parse the timestamp information correctly and
ignoring the values altogether. Lastly, the pattern may manifest
through elements of the timestamp having values outside the expected
range of the element, or spanning only part of the expected range of the
element. For instance, ‘day’ values being only in the range [1…12]
(indicating month and day portions of the timestamp have been
interchanged).

Remedy. To address this problem, it is necessary to ensure the tools
used to import the event log do not inadvertently mis-interpret the
timestamp information without producing any warnings. While te-
dious, the simplest way to handle this situation is to prevent the tools
from interpreting certain fields in the log as ‘timestamp’ information in
the first place. This can be achieved by adding a few characters, such as
asterisks, before and after the timestamp values to force the ‘switching
off’ of the built-in timestamp interpretation mechanism that many
tools have. Following this, the file can be edited (with a text editor) and
appropriate ‘string’ manipulation techniques (such as find and replace)
applied to reformat the string values as timestamps.

Side-effects of Remedy. In practice, there could indeed be events
that were executed in a sequence that did not meet the ‘expected’
ordering restrictions. Hence, this remedy may result in the loss of
interesting deviant behaviours in the log.

Indicative Rule. Let ⊆ be an event log, AN be a set of attribute
names found in and a be the set of all possible values of a AN∈ .
For each domain ai of an attribute, there is an expected set of values
E ⊂a ai i. The unanchored event pattern may exist in log if:

Table 5
An example of the ‘Unanchored Event’ pattern.

Original data

CaseID Activity Timestamp Notes

1234567 Progress note 01/09/2013 21:53:25 ………….
1234567 Medical note 02/09/2013 01:11:25 ……….
1234567 Therapy 12/11/2013 16:08:23 ………….
1234567 Discharge letter 14/11/2013 16:43:29 ………….

Parsed data

CaseID Activity Timestamp Notes

1234567 Progress note 09/01/2013 21:53:25 ……….
1234567 Medical note 09/02/2013 01:11:25 ……….
1234567 Discharge letter 11/14/2013 16:43:29 ………….
1234567 Therapy 12/11/2013 16:08:23 ………….

S. Suriadi et al. Information Systems 64 (2017) 132–150

139

• σ () > 0a E∉i ai (i.e. there are unexpected values in the attribute. For
instance, in a timestamp, there are ‘month’ values outside the
expected [1..12] range.)

• Π σ E() <a a E a∈i ai i (i.e. there are values that would be expected for
the attribute that are not found in the log. For instance, in a
timestamp, the ‘day’ values include only [1..12].)

Pattern. Scattered Event
Description. This pattern refers to events in an event log which have

attributes that contain further information that can be used to derive
new events. In other words, there is information contained within an
existing event log that can be exploited to construct additional events,
but, the information is hidden in attribute values of several events.

Real-life Example. We encountered this pattern (illustrated in
Table 6) in event logs obtained from an Australian hospital. The
entries from the first event log shown in Table 6 record events from a
form (possibly named the ‘Surgical Procedure’ form); hence, we can see
that all of the entries have the same timestamp (which is 21/09/2011
08:11:25). Interestingly, there are two events in this event log (i.e. the
‘Procedure start-time’ event and the ‘Procedure end-time’ event) that
actually give us further information about two other events that have
happened.

In particular, if we look at the corresponding values in the
‘Description’ attribute column, we can discern timestamp values, e.g.
the string ‘2011092010480000’ can be reformatted to ‘2011-09-20
10:48’. Furthermore, in the second log, there is also an entry for an
order event for the same patient with the timestamp of 18/09/2011
13:26:32, and within the corresponding ‘Description’ attribute, there
exist further attribute values that are relevant to the surgical procedure
being ordered. By combining the information from these two event
logs, we can re-create the following scenario: a surgical procedure was
ordered on the 18/09/2011, and the record of the procedure was
entered into the system on the 21/09/2011 (through a form). Within
this form, it was recorded that the procedure started on 20/09/2011
10:48 and finished on 20/09/2011 10:59. Most interestingly, we can
now re-construct two new events: one event to capture the start of the
procedure, and another event to capture the end of the procedure.
Additional information about these two events can be discerned using
the corresponding attribute values obtained from the second log.

Affect. The existence of this pattern is not likely to add additional
overheads or hinder the process mining exercise. However, it repre-
sents untapped information that could enrich the insights obtained
from a process mining exercise.

Data Quality Issue. I16 – Missing data: event – The occurrence of
this pattern affects the trace completeness through omission of events
that actually happened in the case but, due to the logging mechanisms
in the underlying information system, were not recognised as such.

Manifestation and Detection. This pattern manifests itself through
event attribute(s) (other than the timestamp attribute) where part of
the attribute value could be interpreted as a timestamp and (possibly)
part as additional information. To detect this pattern, one needs to
determine one or more attribute name(s) whose values can guide us in
extracting the values needed to form a new event. We call these
attribute names as the guiding column(s). The values that need to be
extracted to form new events also come from one or more attribute(s)
of the same event – we call these the target column(s). For example, in
the example log above, the ‘activity’ attribute is the guiding column,
while the ‘description’ attribute is the target column.

More importantly, the value(s) of the guiding column(s) need to
contain ‘marker’ value from which necessary activity name and time-
stamp information can be extracted to form a new event. In the
example above, the ‘marker’ values include ‘Surgical Procedure’,
‘Procedure start-time’, and ‘Procedure end-time’. The first value leads
us to extract the name of the surgical procedure performed (i.e. the
activity name of an event), while the second and third values allow us to
extract the start and end timestamps for the procedure (i.e. the
timestamp value of an event).

Generally, the detection of this imperfection pattern requires
manual effort and the assistance of domain experts as this ‘hidden’
information (from which new events can be derived) could be encoded
in practically any attribute value of an event log.

Remedy. Given the variety of manners in which this pattern may
manifest itself, a generic solution to fix this issue is unlikely.
Nevertheless, once the location of the information from which new
events can be re-constructed is known, it is possible to develop a tool to
automate the creation of the new events.

Indicative Rule. Let ⊆ be an event log, g g AN, ∈act ts be guiding
column names, t t AN, ∈act ts be target column names, v ∈act gact be a
marker value that guides the extraction of a new activity name from the
target column tact, and v ∈ts gts be a marker value that guides the
extraction of a new timestamp value from the target column tts. Finally,
let W ⊆ tact be a set of possible new activity name values.

A scattered event log imperfection pattern may exist if:

• σ Π W() ≈ | |g v g t= ,act act act act (i.e., there are approximately as many
unique combinations of the marker value for activity name with its
possible values as the number of possible new activity names in W),
and

• given σ Π= ()ts t W g v t∉ ∧ =ts ts ts ts , the values returned in ts should
contain a pattern that suggests timestamp values.

Pattern. Elusive Case
Description. This pattern refers to a log in which events are not

explicitly linked to their respective case identifiers. This pattern is often
seen in an event log that is derived from a system that is not process-
aware, or is not meant to support activities in the context of a process
(e.g. a GPS tracking system, a web traffic log, or industrial devices).

Consequently, the concept of a ‘case’ cannot be trivially defined by
simply using the information in the log as-is. Nevertheless, the notion
of a ‘case’ exists and can be discerned, especially by domain experts
(e.g. a user web-browsing session or a journey from a geographical
location A to another location B).

Real-life Example. We encountered this pattern in a GPS tracking
data set. In this data set, we have a series of GPS-related events, such as
when a vehicle entered and exited a particular geographical area, when
the ignition of the vehicle was turned on or off, and when the vehicle
went into a sleep mode. Table 7 shows an anonymised snippet of the
data set. As can be seen, events recorded in that table do not have any
identifiers that can be used to group them into distinct cases.

Affect. Process mining requires each event be attributable to a case.
The existence of this imperfection pattern will prevent a process mining
analysis being conducted until the concept of what comprises a case has
been resolved.

Table 6
An example of the ‘Scattered Event’ pattern.

Event log 1

Case ID Activity Timestamp Description

1234567 Surgical
Procedure

21/09/2011
08:11:25

Stent insertion and angiography

1234567 Procedure
start-time

21/09/2011
08:11:25

0:2011092010480000:0.000000:0:0

1234567 Procedure
end-time

21/09/2011
08:11:25

0:2011092010590000:0.000000:0:0

Event log 2

CaseID Activity Timestamp Description

1234567 Order a
surgical
procedure

18/09/2011
13:26:32

< AttributeValue 1 >, < Attribute
Value 2 >, …

S. Suriadi et al. Information Systems 64 (2017) 132–150

140

Data Quality Issue. I16 – Missing data: relationships – The
relationship between events and cases is missing.

Manifestation and Detection. This pattern manifests itself in an
event log where events cannot be linked to one another in any
meaningful way, due to the lack of information necessary to group
events into cases. The ‘Elusive Case’ pattern can be said to occur where
there does not exist an attribute that is common to all events for which
the value of the attribute(s) in each event can be used to group events
into a case (i.e. all events relate to the same process instance and
collectively capture all activities of a case that one can reasonably
expect to occur). This pattern can also be detected by randomly tagging
one or more attributes as the ‘case identifier’ attribute(s) of an event log
and then attempting to discover a process model. One could do so when
loading an event log into a process mining tool such as Disco.2 If the
resulting model captures a complete process model with reasonable
temporal dependencies between events, the tagged attribute can be
reasonably used as the ‘case identifier’ attribute for the log. In this
situation, the ‘Elusive Case’ does not exist in the log. If there is/are no
attribute(s) that, when tagged as case identifier, can deliver an
acceptable process model, it is likely that the ‘Elusive Case’ pattern
exists in the log.

Remedy. To address this situation, the cases to which events belong
need to be correctly identified. In most instances, this can be done by
correlating information in the event log with information from another
source. For example, in the GPS data set, a case was defined as a pre-
arranged journey of a particular vehicle from the exit of the vehicle
from a location designated as the starting point of the journey, to the
entry of the vehicle to the last designated location. Information from an
associated journey planner table (which is produced on a daily basis)
was correlated with the GPS events seen in the event log allowing
events in the original event log to be mapped to their respective case
identifier (the journey identifier) (see Table 8).

Side-effects of Remedy. Side effects of such a remedy include (i)
incorrect mapping of events to their cases, and (ii) the omission of
many events in the log as they cannot be mapped to any particular
cases resulting in the loss of potentially important information.

Indicative Rule. Let ⊆ be an event log, AN be a set of attribute
names found in and a be the set of all possible values of a AN∈ .
Let time be the set of possible timestamps in log , act be the set of all
activity values in and ⊏⊆ ×act act be a strict partial order.

The elusive case pattern may be present in log if, for any attribute
a, there exist events e1 and e2 such that:

• e e# ()=# ()a a1 2 ∧ e e# () < # ()time time1 2 ∧ e e# ()⊏# ()act act2 1 (i.e. for any attri-
bute chosen as candidate case identifier, it is always possible to find
events that contradict the strict partial order).

Pattern. Scattered Case
Description. This pattern describes a situation where key process

steps are missing in the event log being analysed (thus not giving the
complete picture of the activities involved in a case) but are recorded
elsewhere (e.g. in a different system). This pattern then is concerned
with constructing a complete picture of the cases in a log by merging
information from different sources. The key challenge here is ascribing
information extracted from different sources to the correct event log
case identifier when each source may have its own unique identifier
(the so called ‘record linkage’ problem [33]).

Real-life Example. We encountered this pattern in one of our
hospital logs. We can see in Table 9 that the Event Log table contains
two case identifiers. These two case identifiers initially seem to belong
to two different patient flows. Similarly, if we look at the Order table,
we see the two case identifiers again. However, by looking at those two
cases individually, it is easy to see that the information recorded in
each case is incomplete. The case identifier ‘1234567’ contains only
activities that were conducted within the emergency department of the
hospital, while the case identifier ‘8912345’ contains only activities that
were conducted within the hospital.

Because we are interested in analysing the end-to-end patient flow,
we need both the emergency department and hospital activities to be
analysed. However, at this point, we can see that those two so-called
‘sub-processes’ are identified using different case identifiers. To estab-
lish the link between the two separate case identifiers (which should be
considered as one case instead), we rely on the information from the
Case Summary table where there exists a ‘Master Record Number’ field.
This field enables us to create the link between the two different case
identifiers. Also note that this ‘Master Record Number’ field does not
exist in the Event Log or in the Order table.

Affect. If not addressed properly, this event log imperfection pattern
will result in discovered process models representing only a fraction of
the total process due to the event log containing incomplete trace
information.

Data Quality Issue. I112 – Incorrect data: relationship – The
associations between events and cases are logged incorrectly from the
domain perspective. That is, within each contributing system's log,
events are correctly ascribed to cases, but as there is no common case
identifier at the domain level, when the events from the contributing
system's logs are combined to form a consolidated process level log, it
is not possible to properly merge events into cases.

Manifestation and Detection. The manifestation of this pattern is as
‘gaps’ with regard to activities recorded in an event log. For example,
for all cases in a log, the time when a blood test was ordered is
recorded, but, expected successor activities such as the drawing of the
blood sample and the return of the blood test results are not recorded.
In this situation, it is clear that there is a segment of information that is
missing from the event log which will need to be ‘patched’ by drawing
the required information from other logs. Where all the activities
involved in the process being analysed are known, detection of this

Table 7
Example of the ‘Elusive Case’ pattern.

Vehicle Event Type Timestamp

Van1 Ignition on 2011-02-07 07:58:00
Van1 Exit Area A 2011-02-07 08:00:00
Van1 Enter Area B 2011-02-07 09:01:39
Van1 Exit area B 2011-02-07 09:22:01
Van1 ………… ……………

Van1 Enter Area X 2011-02-07 15:54:08
Van1 Ignition off 2011-02-07 18:00:00
Van1 ………… ……………

Van1 Enter Area X 2011-02-08 08:00:00
Van1 ………… …………

Van1 Enter Area Z 2011-02-08 10:00:00
Van1 ………… 2011-02-08 01:02:56

Table 8
Example of the ‘Elusive Case’ pattern.

Journey Vehicle Event Type Timestamp

J1 Van1 Ignition on 2011-02-07 07:58:00
J1 Van1 Exit Area A 2011-02-07 08:00:00
J1 Van1 Enter Area B 2011-02-07 09:01:39
J1 Van1 Exit Area B 2011-02-07 09:22:01
J1 Van1 ………… ……………

J1 Van1 Enter Area X 2011-02-07 17:54:08
J1 Van1 Ignition off 2011-02-07 18:00:00
J1 Van1 ………… ……………

J2 Van1 Exit Area X 2011-02-08 08:00:00
J2 Van1 ………… …………

J2 Van1 Enter Area Z 2011-02-08 10:00:00
J2 Van1 Ignition off 2011-02-08 10:02:56

2 http://fluxicon.com/disco

S. Suriadi et al. Information Systems 64 (2017) 132–150

141

pattern involves comparing the list of unique activity names recorded
in each log against expected activity names. The absence of one
particular event log that provides all the activity names expected is a
sign of the existence of such a pattern. A further check would involve
matching each activity with known predecessor and successor
activities.The respective frequencies of the activity, the predecessor
activity and the successor activities should match. A discrepancy could
indicate at least partial trace incompleteness.

Remedy. This imperfection pattern can be redressed through
application of an appropriate record linkage technique so that events
from various sources can be merged into one log with events from the
various sources being properly attributed to cases. The approach to
merging will depend on the availability (or not) of some unique
identifier. Where all data sources use exactly the same case identifiers,
the source logs can simply be merged into one event log. Where
individual source logs use different case identifiers, but there is a global
unique identifier that can be used to establish the link between the
different case identifiers, e.g. through the use of the ‘Master Record
Number’ values in the Case Summary table (as shown in Table 5), the
global unique identifier should be used as the merge key with the case
identifier being set as either the global unique identifier or one of the
existing case identifiers. If no form of unique identifier exists, a
standard record linkage technique can be used to perform the match.
An outline of the standard record linkage and de-duplication process
first described by Newcombe [33] and subsequently formalised by
Fellegi and Sunter [12], is presented in [36]. An overview of various
merge-purge techniques is presented in [11].

Side-effects of Remedy. Where no global unique identifier can be
determined, i.e. a record linkage algorithm has been applied, it is
possible that events will not be properly attributed to cases due to false-
positives and false-negatives generated by the linkage algorithm.

Indicative Rule. Let ⊆ be an event log, be the set of all cases

that exist in , E AN∈A be a set of expected activities (provided
through domain knowledge) in log , and let a a↠i j where a AN∈ and
a a, ∈i j a represent an ‘eventually follows’ relationship between
activities such that if ai occurs in log for some case c ∈ activity
aj must eventually occur in for the same case at some point after ai.
The eventually follows relationship is transitively closed and the set of
eventually follows activity pairs must be provided from domain knowl-
edge. The scattered case pattern may exist in , if, for ‘many’ cases
c ∈ :

• activities occurring in Π σ ()act case c= are a subset of EA
3; and

• for some activities a1, a2 and a a↠1 2 or a a↠2 1, we find a1 occurring in
Π σ ()act case c= but not a2.

Pattern. Collateral Events
Description. This pattern captures the situation where, within an

event log, there are multiple events which essentially refer to one
particular process step within a case. This could result from (i) the
event log having been constructed using data from multiple systems,
each of which with their own way of recording the same process
activity, (ii) the underlying system used is programmed to automati-
cally fire a set of auxiliary events when a specific event (such as the
payment of a bill to a supplier) occurs, and/or (iii) the audit trail-like
nature of the log which records detailed low-level user activities (such
as the opening and closing of a form) so that it is common to see
duplication of events within a very short time period (e.g. when a user
is switching back and forth between two forms). Regardless, as these
events exist independently from each other, their labels are likely to be
different and their timestamps may also differ slightly.

Real-life Example. We encountered this pattern in an Australian-
based insurance organisation. As shown by the sample events in
Table 10, these events all happened within a relatively short time
period (a few minutes difference between events at most). At the same
time, they all referred to a particular process step relating to finalising a
payment to the insurance claim assessor. Nevertheless, due to the
communication between multiple systems, this process step resulted in
multiple events being recorded in the log. In fact, the events shown in
Table 10 were derived from four different sources.

Affect. From a process mining perspective, this pattern tends to
create unnecessary noise in the data. These ‘collateral’ events often
refer to trivial low-level activities which do not contribute much to the
extraction of meaningful insights about processes. Consequently, it is
not uncommon for this pattern to result in highly-complex process
mining results (e.g. overly complex models) that hinder the extraction
of meaningful conclusions.

Data Quality Issue. I27 – Irrelevant data: event – The inclusion of
multiple low-level activities results in the masking of the actual
business process step through the inclusion of multiple events in the
log.

Manifestation and Detection. This pattern's signature is the log
containing groups of activities with timestamps that are very close to
each other (e.g. within seconds). Further, the labels of these activities
may be very similar to each other or are of logical consequences from
one another, and, from the perspective of a domain expert, these events
do not represent a distinct process step. For example, the submission of
an insurance claim via an online claim submission system may fire a set
of notifications and emails to both the customer and the claim
handler(s), resulting in the occurrence of multiple events within a very
short period of time. The detection of this pattern requires the
knowledge of domain experts who are familiar with both the function-
ality of the systems (from which the event log is extracted) and the
overall steps of the process being analysed. However, from our

Table 9
An example of ‘Scattered Case’ pattern.

Event Log

CaseID Activity Timestamp Notes

1234567 Progress Note 7/09/2013 00:50:30 ……….
1234567 Medical Note 7/09/2013 00:52:25 ………….
1234567 ECG 7/09/2013 03:52:48 ………….
8912345 FBC 12/09/2013 15:59:32 ………….
8912345 Therapy 13/09/2013 10:20:01 ………….

Order Table

CaseID Activity Timestamp Notes

1234567 Order ECG 7/09/2013 00:53:45
8912345 Order FBC 12/09/2013 14:04:51 ……….

Case Summary Table

CaseID Visit Type Timestamp Master

1234567 Emergency 6/09/2013 23:47:00 MRN1234567
8912345 Hospital 8/09/2013 13:45:00 MRN1234567

Table 10
An example of the ‘Collateral Events’ pattern.

CaseID Activity Timestamp

1234567 Adjust recovery cost 19/06/2014 12:15:18
1234567 Adjust recovery cost 19/06/2014 12:16:53
1234567 Email 19/06/2014 12:19:25
…. …. …….
1234567 Pay assessor fee 19/06/2014 12:22:48
1234567 Adjust admin cost 19/06/2014 12:22:48

3 We note that the left hand side of the expression represents a mapping, not a set, but
for readability we do not force the distinction.

S. Suriadi et al. Information Systems 64 (2017) 132–150

142

experience, the existence of multiple events occurring within a short
period of time is already an indication of the existence of this pattern.
Furthermore, the existence of a very high number of events in most of
the traces in an event log (e.g. more than 100 events) is also a good
indication of the existence of this pattern.

Remedy. The remedy for this pattern involves the development of a
knowledge base that records information about those activity names
that, when occurring together within a short time period, should be
merged into one single activity. The name of the merged activity should
be specified in the knowledge base too, including the timestamp that
should be used (e.g. take the earliest or the latest timestamp).
Essentially, this remedy will reduce the total number of unique
activities in an event log. While this remedy seems similar to the
remedy for the ‘Synonomous Labels’ pattern (discussed later) the type
of knowledge base required is quite different. The knowledge base for
this pattern requires the knowledge of not just the domain expert, but
also the knowledge of process analysts/system analysts who under-
stand how process steps are created by the system used and subse-
quently stored as events in the logs, including the set of ‘collateral’
events that are triggered by the system. By contrast, the knowledge
required to address the ‘Synonomous Labels’ pattern generally requires
only the knowledge of a domain expert who understands the variations
in the naming of activities.

Indicative Rule. Let ⊆ be an event log and a be a dedicated
timestamp column (typically create time). Let B be a partition of act
into logical business steps. The collateral events pattern may exist in
if there exists a case c and a timestamp t such that there is an element
b B∈ where:

• σ χ σ a count((), { },) > 0count θ case c a t act b> = ∧ = ∧ ∈ and θ is some signifi-
cance level.

Pattern. Polluted Label
Description. This pattern refers to the presence of a group of event

attribute values that are structurally the same, yet are distinct from
each other due to differences in the exact attribute values that further
qualify the meaning of the value.

Real-life Example. We have encountered this pattern in two data
sets that we have analysed. In an event log from an Australian
insurance organisation, we found the existence of this pattern for the
‘Activity’ attribute as shown in Table 11. Here we see that the ‘fixed
words’ are Notification of Loss and Incident No.. The remainder
of the string (noted with a series of ‘X’s) is mutable.

Affect. Where the pattern exists and affects the attribute that serves
as the activity name, the process mining analysis will result in the
discovered process models over-fitting the event log as there will be too
many specific activities that should have firstly been abstracted out. In
general, if this pattern exists and affects attributes such as case
identifiers, activity names, and resource identifiers that are critical
for process mining analyses, the quality of the results will be negatively
impacted as the set of values will have cardinality greater than the
number of allowed values in real-life.

Data Quality Issue. I15 – Incorrect data: activity name, I17 –

Incorrect data: resource – The existence of this pattern in the log,
particularly where it affects the activity name, effectively masks the
underlying process step through the incorrect logging of the activity
name.

Manifestation and Detection. The signature of this pattern is the
attribute value being composed of a mixture of immutable boiler-plate
text and mutable text that occurs at predictable points among the
immutable text. So, if there are two known fixed words (word1,
word2), the ‘Polluted Label’ pattern can be expressed with the
following regular expression: [.]*?(word1)[.]*?(word2)[.]*. The exis-
tence of this pattern can be detected by either (i) checking the number
of distinct values of each attribute (an unexpectedly high number of
distinct values is a good indication of the existence of this pattern)
followed by inspection of the values themselves to identify if there are
those mutable and immutable parts within the values of that particular
attribute, or (ii) using a (semi-)automated tool to cluster the values of
that particular attribute, and within each cluster, to extract a regular
pattern in a form that is similar to the one described above.

Remedy. The detection of the ‘Polluted Label’ pattern implies that
the immutable word(s) of the pattern are known or can be determined.
The mutable words can be removed and the immutable words re-
arranged to form one standard activity name. (Mutable words can be
preserved as attribute values as required.)

Indicative Rule. Let ⊆ be an event log, AN be a set of attribute
names found in and a be the set of all possible values of a AN∈ .
Let const Ω: →a be an operator that returns the immutable compo-
nent of v ∈ a.

The polluted label event log imperfection pattern may exist in if:

• σ σ() | ≪ | ()a v a const v= = () (i.e. there are many more events that
contain the immutable component of v than the actual value v.)

Pattern. Distorted Label
Description. This pattern refers to the existence of two or more

values of an event attribute that are not an exact match with each other
but have strong similarities syntactically and semantically. This pattern
typically occurs through incorrect data entry or inadvertent changing of
attribute values during data pre-processing or extraction.

Real-life Example. We encountered this pattern in one of the logs
obtained from an Australian insurance company. In this log, we
encountered the following entries in the activity attribute of the log:

• ‘a/w inv to cls.’ vs. ‘a/w inv to cls’ (note the existence of a dot in the
first value)

• ‘XX - Further Information Required’ vs. ‘XX - Further Infomation
Required’ (note the missing ‘r’ in the word ‘Information’ in the
second value.

Affect. The impact of this pattern on process mining analysis is
similar to that described for the ‘Polluted Label’ described earlier and
the ‘Synonymous Label’ pattern (see later). That is, where this pattern
applies to the activity name, the readability and validity of process
mining results are negatively impacted. Also, performance analysis
results will be affected through having two or more activities in the log
that should be treated as the same activity, actually being considered as
separate.

Data Quality Issue. I15 – Incorrect data: activity name – The
activity label does not accurately reflect the process step that generated
the log entry.

Manifestation and Detection. This pattern's signature is the
existence of minor differences in the letters of some attribute values,
e.g. ‘Follow-up a call’ vs. ‘follow-up a call’ where the only difference
between the two values is the capitalization of the first letter. The
presence of this pattern can be detected by either (i) selecting all the
distinct values of each attribute in an event log, sorting them
alphabetically and checking for multiple consecutive rows with values

Table 11
Example of the ‘Polluted Label’ pattern.

CaseID Activity Timestamp

xxxx Notification of Loss – XXXX Incident No.
xxxxxx

xxxx-xx-xx xx:xx:xx

xxxx Notification of Loss – XXXX Incident No.
xxxxxx

yyyy-yy-yy yy:yy:yy

xxxx Notification of Loss – XXXX Incident No.
xxxxxx

zzzz-zz-zz zz:zz:zz

……. Notification of Loss – XXXX Incident No.
xxxxxx

……………….

S. Suriadi et al. Information Systems 64 (2017) 132–150

143

that are similar but not exactly the same, or (ii) applying string
similarity search, e.g. [21,23]. This pattern may exist if the string
similarity search returns positive results.

Remedy. Where the pattern manifests as sporadic capitalization of
letters, the attribute values can be transformed to use only lower-case
or upper-case letters. However, if there are multiple factors that cause
the existence of such a pattern, e.g. the (non-)existence of certain
characters and the use of short-hand notations, then we need to use
automated string similarity search to group those values that are
syntactically similar, and replace them with a single value. Manual
intervention may be needed to remove those values that were found to
be syntactically similar but which are not similar semantically.

Side-effects of Remedy. The side-effects of the remedies recom-
mended above should be minimal if manual intervention, as suggested
above, is followed properly.

Indicative Rule. Let ⊆ be an event log, AN be a set of attribute
names found in and a be the set of all possible values of a AN∈ .
Let sim: × → [0 .. 1]a a be a function that returns the syntactic
similarity between pairs of elements of a. The distorted label event
log imperfection pattern may exist in log if:

• σ Π σ Π Π(()⋈ ())s θ a a s sim a a id id a a id id a a id id a a> , ′, : (, ′) ≠ ′∧ ≠ ′ : , : ′: , ′: is not empty,
where θ is some significance level.

Pattern. Synonymous Labels
Description. The ‘Synonymous Label’ pattern refers to a situation

where there is a group of values (of certain attributes in an event log)
that are syntactically different but semantically similar. This pattern is
commonly encountered where an event log has been constructed by
merging data from sources that do not share a common schema thus
allowing the same real-world activity to be recorded with different
labels in each source.

Real-life Example.We encountered this pattern when we attempted
to merge a number of hospital logs for the purpose of comparing their
patient flows. In Hospital A, the activity used to capture the first
consultation of a patient with a doctor is named ‘DrSeen’. In Hospital
B, the same activity is recorded as ‘Medical Assign’. These two labels
have the same meaning but they are quite different syntactically. The
issue of labels being represented differently has been widely studied in
other literature, especially in the area of ‘label matching’ (e.g. [10]).

Affect. Where this pattern affects the activity name, the readability
and validity of process mining results are negatively impacted due to
the inclusion of ‘behaviours’ in the discovered process models that
should have been ‘merged’ (as they involve activities that share the
same semantics). This pattern may also impact the performance
analysis results through having two or more activities in the log that
should be treated as the same activity, actually being considered as
separate.

Data Quality Issue. I22 – Imprecise data: event attributes – The
existence of multiple names for the same attribute creates ambiguity in
an event log.

Manifestation and Detection. This pattern's signature is the
existence of multiple values of a particular attribute that seem to share
a similar meaning but are nevertheless, distinct. For example, a
particular resource is identified as ‘jsmith’ in some events and ‘Jason
Smith’ in others. These two distinct values, in reality, refer to the same
resource. Detection of this pattern may require the establishment of a
knowledge base that stores the list of ‘acceptable’ values for each
attribute in the log. Such a knowledge base will allow checking of the
values of each attribute against the corresponding list of ‘acceptable’
values. The ‘Synonymous Label’ pattern exists when two or more
attribute values correspond to the same value in the ‘acceptable’ list.

Remedy. Where syntactic differences between labels are minor, a
text similarity search can be applied to group those events that have
strong similarity in their labels, and then replace them with a pre-
defined value. Where the syntactic differences are quite substantial

(e.g. ‘DrSeen’ vs. ‘Medical Assign’), the use of an ontology will allow
replacement of the labels with just one value (either one of the
synonyms can theoretically be used as the label substitute).

Side-effects of Remedy. A label could be incorrectly mapped to
another label such that the meaning of the original label somewhat
deviates from the original meaning (or intent) of the label. This is likely
to happen when the ontology used is flawed or when two labels share
strong syntactic similarities but differ semantically, e.g. ‘drawn vs.
dawn’.

Indicative Rule. Let ∈ be an event log. For a given attribute
name a AN∈ , a is the set of all syntactically-distinct values of a, and
Sem ⊆ ×a a is the set of pairs of values of attribute a that are
semantically similar. Sem is symmetric, irreflexive, and transitive. The
synonymous label pattern may exist in if:

• σ Π Π(()⋈ ())id id Sem a a id id a a id id a a≠ ′∧ (, ′) : , : ′: , ′: is not empty.

Pattern. Homonymous Label
Description. This pattern describes a situation where an activity is

repeated multiple times within a case (same activity label applied to
each occurrence of the activity), but the interpretation of the activity,
from a process perspective, differs across the various occurrences. This
pattern is likely to occur when an audit trail log is used to construct an
event log. An audit trail log typically contains low-level records of
‘things that have been executed’ by users. The influence of contextual
factors (such as the number of times an activity has been repeated
within the same case) on the meaning of the activity being recorded is
not captured.

Real-life Example.We have seen this pattern occurring in a hospital
log that we have analysed. A snippet of the log is provided in Table 12.
Here the activity ‘Triage Assessment’ is recorded three times in the log.
These events were captured from a form called the ‘Triage Assessment
Form’. By taking into account contextual information such as the
events preceding the second and the third occurrences of the ‘Triage
Assessment’ activity, it became clear that the repeated activities should
be interpreted differently.

The second ‘Triage Assessment’ happened after the patient was
discharged. Therefore, it is unlikely that the second occurrence of this
activity means that the patient was being triaged again. Also note that
the third occurrence of the activity happened just four minutes after the
second one. We can make an educated guess that the second and third
occurrences of the ‘Triage Assessment’ activity actually refer to a
medical officer reviewing the information captured in the triage form
about one week after the patient was discharged to conduct further
activities, e.g. giving the patient a follow-up call.

Affect. The existence of this pattern will result in discovered process
models painting an incomplete picture of the process being analysed.
Incomplete because the repeated activities, which actually have differ-
ent meanings, are ‘grouped’ into one, thus ‘hiding’ certain process
information. This is because most, if not all, process discovery
algorithms do not treat repeated activities as separate activities in the
discovered model.

Data Quality Issue. I2 – Imprecise data: activity name – The
activity names are too coarse to reflect the different connotations
associated with the recorded events.

Table 12
Example of the ‘Homonymous Label’ pattern.

CaseID Activity Timestamp

1234567 Triage Assessment 06/09/2013 12:33:17
1234567 Progress Note 06/09/2013 13:10:23
1234567 Discharged 06/09/2013 13:15:00
1234567 Triage Assessment 13/09/2013 07:24:36
1234567 Triage Assessment 13/09/2013 07:28:51

S. Suriadi et al. Information Systems 64 (2017) 132–150

144

Manifestation and Detection. The signature of this pattern is the
existence of an activity within a discovered process model that has
many incoming arcs, often including a self-loop arc and arcs from other
activities (as shown in Fig. 4).

In reality, each repetition of the ‘Correspondence’ activity may refer
to correspondence of a different type (e.g. sending a quote, scheduling a
meeting, etc.). The presence of these arcs alone is an indication (but not
confirmation) of the existence of the pattern in the log. A second
indicator is the ratio of the number of times a particular activity occurs
in a log and the total number of cases in the log. A high ratio indicates
that the activity is repeated many times within a case and requires
investigation to check if different interpretations are possible for each
repetition of the activity. Domain knowledge (as to different meanings
being ascribed to repeated occurrences of the activity) is required to
conclusively detect the existence of this pattern.

Remedy. This pattern can be addressed by explicitly relabeling
repeated activities with a context sensitive name. Doing so requires
firstly identifying the different contexts under which an activity can be
repeated, developing a formula to assign the appropriate context to
those homonymous activities, and then differentiating between them
by adding context information into the label of those activities. For
example, the second and third occurrences of the activity ‘Triage
Assessment’ in the event log shown in Table 12 can be renamed to
‘Triage Assessment (Review)’, thus distinguishing between the actual
triage assessment activity and the review of the triage assessment form
activity.

Side-effects of Remedy. The decoupling of activity labels proposed
in this remedy may result in too many distinct activity names, thus
reducing the readability of the discovered process model and making
the process mining analyses more complex and laborious.

Indicative Rule. Let ∈ be an event log. For a given attribute
name a AN∈ , a is the set of all syntactically-distinct values of a, and

⊆ a is the set of homonyms where may be populated using
process context information. The homonymous label pattern may exist

in if:

• σ ()a∈ is not empty.

6. Case study

We have applied the data imperfection patterns in a process mining
case study with an Australian-based hospital analysing their emergency
department treatment process for patients with chest-pain symptoms.

6.1. Preliminary

The raw data from the hospital consisted of four tables. The
encounter table contained a summary of 2136 patient encounters that
occurred over a certain 18-month period. This table included patient
arrival times, discharge times, discharge destinations, encounter types,
and other non-identifying patient data. The data in the encounter table
was recorded in a typical key-value format with each row containing
the details of a specific encounter. The emergency table contained
events recorded from the system used to manage key Emergency
Department activities, e.g. triage time and assignment of a patient to a
doctor. The emergency table was provided in an event-log format and
contained 16,587 events. The clinical table was produced from the
hospital system which recorded all clinical events. Data from this table
was very fine-grained (almost like an audit-trail), was formatted as an
event-log and contained 189,994 events. The orders table contained
records of all orders that had been placed in relation to a particular
encounter, e.g. blood test orders and X-ray imaging orders. The data in
this table was structured as an event-log and consisted of 8974 events.

6.2. Event Log Imperfection Patterns observed in the hospital data

Unanchored Events – All tables. To remove ambiguity and to
ensure events could be properly ordered, the first thing we did was re-
format the timestamp values in the raw data to our standard format
using a spreadsheet program. Had we not anticipated the possible
existence of the Unanchored Event pattern, it would have been easy for
the timestamp values in our data to be interpreted incorrectly. We
experimented with loading one of the tables into the process mining
tool, Disco (www.fluxicon.com/disco). Disco initially loads a sample of
the data (normally the first 1000 events) and allows the user to allocate
each field of the data to an event log attribute (e.g. case identifier,

Fig. 4. A symptom of the existence of the ‘Homonymous Label’ pattern.

Fig. 5. A potentially-undetected mistake in the specification of the timestamp format.

S. Suriadi et al. Information Systems 64 (2017) 132–150

145

http://www.fluxicon.com/disco

activity name, resource identifier, and timestamp). When a field is
tagged as being ‘timestamp’, users can specify the timestamp format.
Fig. 5 shows that the default timestamp format was month-day-year.
However, the timestamp format in the log was day-month-year.
Because the first 1000 events in the log contain dates with timestamp
values that can be validly interpreted using either format (i.e. the date
ranges from 1 September to 9 September), the Disco tool would allow
the month-day-year selection. When the complete event log was
imported, Disco attempted to interpret those timestamp values that
could not be validly interpreted in the month-day-year into another
timestamp. For example, Fig. 6 shows how the original date of 18
September 2011 was incorrectly interpreted as 6th September 2012.
Because we had anticipated such an issue, we avoided this potential
problem.

Elusive Case – Encounter table. In this case study, we intended to
analyse end-to-end patient flow from the arrival of a patient at the
emergency department (ED) to their discharge from the hospital. When
ED patients require inpatient treatment, they are admitted to hospital
under a new encounter identifier. To properly track end-to-end patient
flow, we needed to be able to link an ED encounter identifier with its
corresponding hospital encounter identifier for patients who were later
admitted to the hospital. (Note that a row in the encounter table does
not explicitly link an ED encounter with its corresponding hospital
encounter). Further, the events recorded in the other tables (i.e. the
emergency, clinical, and order tables) were also linked only to their
respective encounter identifier. Therefore, the encounter identifier
attribute on its own cannot be used as the case identifier.

Our data also contained each patient's medical record number
(MRN) which uniquely identifies a patient. However, it is not un-
common for a patient to have multiple ED encounters. Therefore, if we
had used MRN as the case identifier, multiple patient flows (as per our
intended definition of a patient flow) may be captured within a case.
Thus, by itself, the MRN could not be used as the case identifier either.
After consideration, none of the other attributes could be used as case
identifier.

This situation indicates the presence of the Elusive Case pattern
because none of the attributes that are common to all events in all of
the tables can be used to group events into their respective cases. The
pattern remedy calls for correlating information in the event log with
information from another source. In this instance, we used attributes
from the encounter table including the encounter type, the discharge

destination, the admission time, and the discharge time as well as the
MRN to create a heuristic rule which states that: (1) for each row in the
encounter table where (i) the encounter type is ‘emergency department’
encounter and (ii) the discharge destination is ‘discharge to the same
hospital’ (we called this row the ‘ED’ row), (2) find within the same
encounter table another row where (i) the encounter type is ‘hospital’
encounter, (ii) the admission timestamp is the same day as the
discharge timestamp of the ‘ED’ row, and (iii) the MRN value of this
row is the same as the MRN value of the ‘ED’ row (we called this row
the ‘hospital row’). If a ‘hospital row’ is found for a given ‘ED row’,
replace the encounter identifier of the ‘hospital row’ with the encounter
identifier of the ‘ED row’. The application of this rule remedied the
Elusive Case issue by making the ED encounter identifier the case
identifier. This remedy did not completely resolve the issue as there
were a few rows in the tables that we could not match properly. In two
encounters with the same MRN, emergency and hospital encounters
were registered with exactly one day difference. We assumed this was a
data entry error (possibly Inadvertent Time Travel) and considered
these encounters to be one case and merged accordingly. One
encounter was removed as it was the only hospital encounter (other
than the ones with the assumed data entry error) that did not have a
corresponding emergency encounter registered on the same day.

Form-based Event Capture – Clinical Table. The clinical table
contained an abnormally high number of events in comparison to the
number of events in other tables. We further observed that there were
many events with the same case identifier and timestamp. Further, the
activities for those events with the same case identifier and timestamps
were often repeated (i.e. there were occurrences of more or less similar
sequences of events with the same timestamp and case identifier, e.g.
PrimarySurvey, followed by AirwayClear, BreathingRate,
BreathingDepth, …).

This fits the criteria for the existence of the Form-based Event
Capture in the data set which was confirmed when we matched the
activities in the log with the activities on the actual electronic forms
used by the clinicians.

We remedied this problem by collapsing all events that (i) were
likely to belong to the same form and (ii) had been recorded as a result
of the same action triggered by the user (e.g. exiting a form or clicking
on a ‘Save Form’ button) into one event (whenever possible without
inducing any loss of important events) or multiple events (if necessary
in order to retain important events). The latter often occurred when a

Fig. 6. An example of how the ‘Unanchored Event’ pattern could have manifested in our data set.

S. Suriadi et al. Information Systems 64 (2017) 132–150

146

user closed two or more forms almost simultaneously (e.g. through a
‘close all’ functionality).

We exploit the SQL ‘Group By’ operator to address this issue. For
each case, we grouped activity names by timestamp on the basis that
form-based events would have been recorded with the same time-
stamp. Thus, for each timestamp of a case, we obtain a list of activities
that occurred for that particular timestamp. We note that in this
example, drawn from a single encounter identifier, the opening of the
form, as well as the transition between data tabs (subforms) can be
seen in the log (see Fig. 7). Collapsing the log events can thus be
performed at either the form level or the tab (subform) level. Having
performed the above cleaning, we managed to reduce the number of
events in the clinical table from 189,994 to 14,778.

Collateral Events – Order and Clinical Tables. The Collateral
Events pattern was noticed within the Clinical and the Orders tables. In
the Clinical table, a single event recording a set of blood tests is related
to multiple events (one per blood test) in the Orders table. Table 13
shows an example of this pattern.

This situation needs to be addressed, otherwise, activities in the log
may be interpreted as being ‘fragmented’ while in reality, this is not the
case. These fragmented and scattered activities can be safely seen as

one activity that was ‘mildly interrupted’ during its execution. We
addressed this pattern by (i) constructing a knowledge base that listed
all the different blood tests that could be ordered, (ii) using the
knowledge base to merge all blood test orders with the same timestamp
into a single activity called ‘Blood Tests (Ordered)’, and (iii) removing
the ‘SOCPathology’ activity from the log as it only informed us that

Fig. 7. ‘Form-based Event Capture’ snippet.

Fig. 8. Pervasiveness of Event Log Imperfection Patterns.

Table 13
An example of the ‘Collateral Events’ pattern in the hospital log.

CaseID Activity Timestamp Table Detail

1234567 SOCPathology 21/09/2011
09:20:53

Clinical FBC,INR,Troponin,
ELFTs

1234567 …… …… …… ……

1234567 FBC 21/09/2011
09:25:58

Orders 21/09/2011 09:25
FBC

1234567 ELFTs 21/09/2011
09:25:58

Orders 21/09/2011 09:25
ELFTs

1234567 Troponin 21/09/2011
09:25:58

Orders 21/09/2011 09:25
Troponin

1234567 INR 21/09/2011
09:25:58

Orders 21/09/2011 09:25
INR

S. Suriadi et al. Information Systems 64 (2017) 132–150

147

blood tests were to be requested whereas the records in the Orders
table show when the orders were actually made.

Scattered Event – Clinical Table. The Scattered Event pattern was
detected in the Clinical table in activities relating particularly to
surgical procedures. The pattern was detected by firstly observing that
the activities ‘SN-Proc-StartTime’ and ‘SN-Proc-StopTime’ contained
timestamp-like values as an attribute. Further investigation showed
that the ‘SN-Surgical-Procedures’ and ‘SN-Proc-Primary-Surgeon’ ac-
tivities also contained information useful in reconstructing a single
activity (as shown in Table 14).

The pattern was remedied by (i) building a knowledge base of
surgical procedures identified by a 5 digit code plus text description
from the attribute values of the ‘SN-Surgical-Procedures’ activity (ii)
for each occurrence of the ‘SN-Surgical-Procedures’ activity in the
Clinical table, using the attribute values of the ‘SN-Surgical-Procedures’
and ‘SN-Proc-StopTime’ with the same case identifier and timestamps
to reconstruct the surgical procedure event record.

Scattered Case – Order Table. This pattern was illustrated in the
hospital data used to describe the Scattered Case pattern earlier.

Homonymous Label – Clinical Table. This pattern was illustrated
in the hospital data used to describe the Homonymous Label. Note that
the pattern also affected other activities (e.g. medical note, nursing
primary assessment) where there was the initial event (observation and
recording) with subsequent accesses to review/update the record.

6.3. Occurrence in other data sets

As shown in Table 15, the patterns were also observed in other data
sets that we have analysed. The Hospital2 data set was derived from
another Australian hospital and includes 884 cases of patients pre-

senting at the Emergency Department with multiple trauma injuries.
Both the Insurer1 and Insurer2 data sets deal with insurance claims

handling. The Insurer1 data set consisted of approximately 500,000
distinct work items (events) and the Insurer2 data set included 17,750
cases. We note that, as assessed against the log maturity scale in [45],
the hospital logs rate as 2-star and exhibit many of the characteristics
of logs derived from HIS as described in [25]. The insurer logs were of a
3-4-star log maturity rating yet even these logs exhibit many of the
imperfection patterns described in this paper. The Hospital1 data set
was chosen as the examplar for the patterns largely because it exhibited
the majority of the patterns described in this paper.

7. Evaluation

A user evaluation of the event log imperfection pattern set
described in this paper was conducted via a questionnaire to determine
1) the pervasiveness of the patterns in event logs used by respondents
in process mining analyses, 2) the importance attached by respondents
to recognising the existence of each pattern in a process mining
analysis, and finally, 3) the perceived usefulness of the pattern
approach in characterising event log quality issues. The questionnaire
was targeted at process mining researchers and practitioners and was
distributed via a number of channels including (i) IEEE Task Force on
Process Mining; (ii) LinkedIn Process Mining group; and (iii) contacts
in universities, research institutions, companies and government
departments known to be active in the field of process mining. The
questionnaire preface outlined the background and motivation for the
research. Participants were asked to answer a number of questions
regarding their demographics. The questionnaire presented each of the
11 event log imperfection patterns described in this paper with
respondents being asked to indicate how many times they had seen
the pattern in data sets they had analysed, and the importance they
attached to recognising the existence of the pattern given its potential
impact on a process mining analysis. The perceived importance is
measured using a Likert-like scale (Very important, Important,
Neutral, Not so important, Not important at all).

7.1. Evaluation results

Of the 23 people that started the questionnaire, a total of 20 people
completed it, which translates to a response rate of 87% including 15
academics/researchers and 5 practitioners with varying levels of data
mining and process mining experience. 90% of respondents indicated
they had worked in a role that involved analysing data or data
manipulation for 1 or more years with 45% of respondents indicating
more than 5 years involvement.

Respondents were ‘Familiar’ with both data mining and process
mining, predominantly use WEKA as a data mining tool (R and Rapid
Miner were also popular tools) with ProM and Disco being the most

Fig. 9. Perceived importance of Event Log Imperfection Patterns.

Table 14
An example of the ‘Scattered Event’ pattern in the hospital log.

Scattered events

CaseID Activity Timestamp Detail

1234567 SN-Surgical-
Procedures

8/09/2011
09:13:25

38306Transluminalstentinsertion

1234567 SN-Proc-
Primary-
Surgeon

8/09/2011
09:13:25

Anonymised

1234567 SN-Proc-
StartTime

8/09/2011
09:13:25

0:2011090709340000:0.000000:0:0

1234567 SN-Proc-
StopTime

8/09/2011
09:13:25

0:2011090710010000:0.000000:0:0

Reconstructed event
Case ID Activity Timestamp Resource
1234567 Transluminal

stent insertion
7/09/2011
10:01:00

Anonymised

S. Suriadi et al. Information Systems 64 (2017) 132–150

148

popular process mining tools among respondents. The average number
of patterns observed by any respondent being 7 (of the 11 patterns). All
patterns have been seen by at least 45% of respondents with 4 patterns
having been observed by at least 70% of the respondents. The most
frequently observed patterns were Scattered Case, Form-based Event
Capture and Distorted Label (seen by 90%, 85% and 80% respectively
of respondents). The Scattered Event, Inadvertent Time Travel and
Synonymous Labels patterns were least frequently observed (seen by
only 45%, 50% and 50% respectively of respondents).

All patterns except the Polluted Label and Scattered Event patterns
were rated as ‘Important’ or ‘Very important’ by at least 50% of the
respondents. All respondents rated the collection of patterns as being
‘Useful’ (55%) or ‘Very useful’ (45%) in terms of characterising event
log quality issues.

While the small sample size precludes statistically significant
conclusions being drawn from the results, the responses indicate
agreement with the notion that the patterns exist as a real phenomenon
(according to the “rule of three” [4]) and that the patterns are
important and useful.

8. Conclusion

Contemporary logs typically have many issues that need to be
resolved before they can serve as input for analysis. They may contain
imprecise or even incorrect data, certain important events may not
have been recorded (e.g. certain transaction types may not be
recorded), or they contain data that needs to be interpreted carefully
(e.g. timestamps). While an event log may exhibit a number of specific
problems, there are many issues that recur frequently and which can be
resolved using a variety of known remedies. To address the cleaning of
a log in a systematic manner, this paper documents a collection of
typical problems one may encounter in event logs as well as associated
remedies that can be used to rectify them. This documentation takes
the form of patterns, collectively providing a repository of knowledge to
deal with data imperfections. While the patterns are informed by
problems that may manifest themselves in the context of data mining,
they are targeted to the field of process mining and the specific issues
that may arise there. The patterns remain agnostic of any subsequent
form of analysis (e.g. process discovery or process conformance) and
can thus be applied in the first stages of a process mining trajectory.
The patterns were validated using a number of event logs, with varying
degrees of ‘maturity’, from practice. These event logs demonstrate that
(i) the patterns identified do indeed occur, (ii) that higher ‘maturity’
ratings do not guarantee that logs will be free of imperfections, and (iii)
event logs require attention before embarking on specific analysis
tasks.

We recognise that, as the patterns described in this paper were
drawn from only 4 data sets, it is likely that more such patterns will be
identified through analysis of other data sets. We do not claim an
exhaustive listing of event log imperfection patterns, but do claim that
the pattern plus recommended remedy approach is a significant
contribution to the systematic preparation of logs for process mining
analyses. This view was supported by the respondents to the evaluation
questionnaire. Despite the small sample size, the majority of respon-
dents had significant work experience in analysing data and approxi-
mately half of the respondents indicated they had analysed more than
20 event logs.

This paper directly addresses several of the challenges facing
process mining raised in the Process Mining Manifesto [45]. In
particular, from a data quality perspective, C1: Finding, merging and
cleaning event data and C2: Dealing with complex event logs having
diverse characteristics. Furthermore, the use of data imperfection
pattern-based approach to cleaning event logs can be seen as the first
step towards addressing two other challenges listed in the manifesto:
C10 and C11 which deal with improving usability and understand-
ability, respectively, of process mining to non-experts. At present, thereT

a
b
le

1
5

O
cc
u
rr
en

ce
of

ev
en

t
lo
g
im

p
er
fe
ct
io
n
p
at
te
rn

s
in

ot
h
er

d
at
a
se
ts
.

F
or
m
-b
as
ed

ev
en

t
ca
p
t.

In
ad

ve
rt
en

t
ti
m
e
tr
av

el
C
ol
la
te
ra
l

ev
en

ts
Sc

at
te
re
d

ev
en

t
U
n
an

ch
or
ed

ev
en

t
E
lu
si
ve

ca
se

Sc
at
te
re
d

ca
se

Sy
n
on

ym
ou

s
la
be

ls
H
om

on
ym

ou
s
la
be

ls
D
is
to
rt
ed

la
be

l
P
ol
lu
te
d
la
be

l

D
at
a
se
ts

H
os
p
it
al
1

✓
✓

✓
✓

✓
✓

✓
✓

H
os
p
it
al
2

✓
✓

✓
✓

✓
✓

In
su

re
r1

✓
✓

✓
✓

✓
✓

In
su

re
r2

✓
✓

✓
✓

✓
✓

S. Suriadi et al. Information Systems 64 (2017) 132–150

149

is a lack of agreed systematic approach (and its related supports) to
undertaking an end-to-end process mining project (from data pre-
processing, analysis, and results interpretation).

We argue that our pattern-based approach contributes to the
development of this systematic methodology on the basis that (i) event
log cleaning is a necessary first step towards achieving high quality
input, (ii) the patterns can be applied in a (semi-)automated manner,
and (iii) the patterns are independent of the purpose of the analysis.

There are a number of avenues for future work. One of these
involves the development of a suite of metrics describing the perva-
siveness of the patterns in a log. The patterns affect a log at different
levels including attributes, events and cases, thus the various perva-
siveness metrics would determine the number of attributes, events and
cases affected by individual patterns and the pattern collection overall.
(Note that it is then possible to determine the fraction of the log
impacted by the patterns by dividing the count of the respective log
elements affected by the total number of the respective element in the
log.) Another avenue is the development of a formal framework that
can be used to specify both existing patterns and as yet undescribed
patterns. The metrics and framework will constitute the basis of
automated support in detecting the presence of patterns and applying
suitable remedies to fix any of the problems detected. The metrics may
provide guidance with remedy selection and prioritisation. Additional
possible future work is the documentation of pattern collections for
preparing data for specific analysis tasks in the area of process mining
and further substantiation of the approach through feedback from
more researchers and practitioners.

Acknowledgements

The research for this paper was supported by Australian Centre for
Health Services Innovation (AusHSI) Stimulus Grant – Project
Reference no. SG0009-000450.

References

[1] ISO/IEC 25010:2011: Systems and software engineering – Systems and software
product Quality Requirements and Evaluation (SQuaRE) – System and software
quality models, 2011.

[2] C. Alexander, The Timeless Way of Building, Oxford University Press, 1979.
[3] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns, Buildings,

Constructions, Oxford University Press, 1977.
[4] D. Alur, D. Malks, J. Crupi, Core J2EE Patterns (Core Design Series): Best Practices

and Design Strategies, Sun Microsystems Inc, 2003.
[5] C. Batini, M. Scannapieco, Data Quality: Concepts, Methodologies and Techniques,

Springer, 2006.
[6] J.C. Bose, R.S. Mans, W.M.P. van der Aalst, Wanna improve process mining

results? It's high time we consider data quality issues seriously, in: Proceedings of
the IEEE CIDM. Singapore, IEEE, 2013, pp. 127–134.

[7] J.C. Bose, R.S. Mans, W.M.P. van der Aalst, Wanna improve process mining
results? It's high time we consider data quality issues seriously, Technical Report
BPM-13-02, BPM Center Report, 〈http://bpmcenter.org/wp-content/uploads/
reports/2013/BPM-13-02.pdf〉, 2013.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-oriented
software architecture: a system of patterns Vol 1. Wiley, 1996.

[9] R. Conforti, G. Fortini, M. La Rosa, A.H.M. ter Hofstede, Noise filtering of process
execution logs based on outliers detection, Trans. Knowl. Data Eng. PP (99), 2016,
1-1.

[10] M. Ehrig, A. Koschmider, A. Oberweis, Measuring similarity between semantic
business process models, in: Proceedings of the Fourth APCCM, vol. 67 of APCCM
'07, ACS, 2007, pp. 71–80.

[11] A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record detection: a
survey, Trans. Knowl. Data Eng. 19 (1) (2007) 1–16.

[12] I.P. Fellegi, A.B. Sunter, A theory for record linkage, J. Am. Stat. Assoc. 64 (328)
(1969) 1183–1210.

[13] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, Reading,
Massachusetts, 1997.

[14] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.
[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Object-

Oriented Software, Addison-Wesley, 1994.
[16] L. Ghionna, G. Greco, A. Guzzo, L. Pontieri, Outlier detection techniques for

process mining, in ISMIS, volume 4994 of LNCS, Springer, 2008, pp. 150–159.
[17] T. Gschwandtner, J. Gärtner, W. Aigner, S. Miksch, A taxonomy of dirty time-

oriented data, in Multidisciplinary Research and Practice for Information Systems,
volume 7465 of LNCS, Springer, 2012, pp. 58–72.

[18] C.W. Günther, Process Mining in Flexible Environments (Ph.D thesis), Technische
Universiteit Eindhoven, 2009.

[19] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building and
Deploying Messaging Solutions, Addison-Wesley, 2003.

[20] W. Kim, B. Choi, E. Hong, S. Kim, D. Lee, A taxonomy of dirty data, Data Min.
Knowl. Discov. 7 (1) (2003) 81–99.

[21] C. Klinkmüller, I. Weber, J. Mendling, H. Leopold, A. Ludwig, Increasing recall of
process model matching by improved activity label matching, in: Proceedings of
BPM, volume 8094 of LNCS, Springer, 2013, pp. 211–218.

[22] M. Laverdiere, A. Mourad, A. Hanna, M. Debbabi, Security design patterns: survey
and evaluation, in: IEEE Canadian Conference on Electrical and Computer
Engineering, 2006, pp. 1605–1608.

[23] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and
reversals, Dokl. Akad. Nauk SSSR 163 (4) (1965) 845–848.

[24] R.S. Mans, W.M.P. van der Aalst, R.J.B. Vanwersch, Process mining in healthcare –
opportunities beyond the ordinary, Technical Report BPM-13-26, Eindhoven
University of Technology, 〈http://bpmcenter.org/wp-content/uploads/reports/
2013/BPM-13-26.pdf〉, 2013.

[25] R.S. Mans, W.M.P. van der Aalst, R.J.B. Vanwersch, A.J. Moleman, Process mining
in healthcare: Data challenges when answering frequently posed questions, in:
Process Support and Knowledge Representation in Health Care, volume 7738 of
LNCS, Springer, 2012, pp. 140–153.

[26] M.A. Marsan, G. Conte, G. Balbo, A class of generalized stochastic petri nets for the
performance evaluation of multiprocessor systems, ACM Trans. Comput. Syst. 2 (2)
(1984) 93–122.

[27] L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, A. van den Bosch, A rule-
based approach for process discovery: dealing with noise and imbalance in process
logs, Data Min. Knowl. Discov. 13 (2006) 67–87.

[28] A. Moore, M. Collins, D. Mundie, R. Ruefle, D. McIntire, Pattern-based design of
insider threat programs, Technical Report CMU/SEI-2014-TN-024, Software
Engineering Institute, 2014.

[29] A. Moore, D. McIntire, D. Mundie, The justification of a pattern for detecting
intellectual property theft by departing insiders, Technical Report 732, Software
Engineering Institute, 2013.

[30] A. Moore, M. Hanley, D. Mundie, A pattern for increased monitoring for
intellectual property theft by departing insiders, in: Proceedings of the Conference
on Pattern Languages of Programs, 2011, pp. 1–17.

[31] H. Müller, Problems, methods, and challenges in comprehensive data cleansing,
Informatik-Berichte. Professoren des Inst. Für Informatik, 2005.

[32] R.E. Neapolitan, Learning Bayesian Networks, Prentice-Hall Inc., Upper Saddle
River, NJ, USA, 2003.

[33] H.B. Newcombe, J.M. Kennedy, S.J. Axford, A.P. James, Automatic linkage of vital
records, Science 130 (3381) (1959) 954–959.

[34] P. Oliveira, F. Rodrigues, P. Henriques, A formal definition of data quality
problems, in: Proceedings of the MIT IQ Conference. MIT, 2005.

[35] A. Partington, M.T. Wynn, S. Suriadi, C. Ouyang, J. Karnon, Process mining for
clinical processes: a comparative analysis of four Australian hospitals, ACM Trans.
Manag. Inf. Syst. 5 (4) (2015) 19:1–19:18.

[36] M.V.S. Prasad, C.K. Prasad, B. Rambabu, Appraisal of efficient techniques for
online record linkage and deduplication using q-gram based indexing, Int. J.
Comput. Sci. Mob. Comput. 3 (5) (2014) 404–414.

[37] E. Rahm, H. Do, Data cleaning: problems and current approaches, IEEE Bull. Tech.
Comm. Data Eng. 23 (4) (2000) 3–13.

[38] D. Riehle, H. Zűllighoven, Understanding and using patterns in software devel-
opment, Theory Pract. Object Syst. 2 (1) (1996) 3–13.

[39] A. Rogge-Solti, R.S. Mans, W.M.P. van der Aalst, M. Weske, Repairing event logs
using timed process models, in: OTM 2013 Workshops, volume 8186 of LNCS,
Springer, 2013, pp. 705–708.

[40] S. Suriadi, R.S. Mans, M.T. Wynn, A. Partington, J. Karnon, Measuring patient flow
variations: A cross-organisational process mining approach, in: AP-BPM, LNBIP,
Springer, 2014, pp. 43–58.

[41] S. Suriadi, M.T. Wynn, C. Ouyang, A.H.M. ter Hofstede, N. van Dijk, Understanding
process behaviours in a large insurance company in Australia: A case study, in:
CAiSE, volume 7908 of LNCS, 2013, pp. 449–464.

[42] T. Taibi, D. Ngo, Formal specification of design patterns – a balanced approach, J.
Object Technol. 2 (4) (2003) 127–140.

[43] P. van Bommel, A.H.M. ter Hofstede, T.P. van der Weide, Semantics and
verification of object-role models, Information Systems, 16(5), 1991, pp. 471–495.

[44] W.M.P. van der Aalst, Process Mining – Discovery, Conformance and Enhancement
of Business Processes, Springer, 2011.

[45] W.M.P. van der Aalst et al. Process mining manifesto, in: Florian Daniel et al. (ed.),
BPM 2011 Workshops (1), volume 99 of LNBIP, Springer-Verlag, 2011, pp. 169–
194.

[46] W.M.P. van der Aalst, A.H.M. ter Hofstede, Workflow patterns put into context,
Softw. Syst. Model. 11 (2012) 319–323.

[47] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros, Workflow
patterns, Distrib. Parallel Databases 14 (3) (2003) 5–51.

[48] Y. Wand, R. Wang, Anchoring data quality dimensions in ontological foundations,
Commun. ACM 39 (11) (1996) 86–95.

[49] R. Wang, V.C. Storey, C.P. Firth, A framework for analysis of data quality research,
IEEE Trans. Knowl. Data Eng. 7 (4) (1995) 623–640.

[50] R.Y. Wang, D.M. Strong, Beyond accuracy: what data quality means to data
consumers, J. Manag. Inf. Syst. 12 (4) (1996) 5–33.

[51] A.J.M.M. Weitjers, W.M.P. van der Aalst, Rediscovering workflow models from
event-based data using little thumb, Integr. Comput.-Aided Eng. 10 (2) (2003)
151–162.

[52] S. Yacoub, H. Ammar, Pattern-Oriented Analysis and Design: Composing Patterns
to Design Software Systems, Addison-Wesley Profession, United States, 2004.

S. Suriadi et al. Information Systems 64 (2017) 132–150

150

http://refhub.elsevier.com/S0306-15)30134-sbref1
http://refhub.elsevier.com/S0306-15)30134-sbref2
http://refhub.elsevier.com/S0306-15)30134-sbref2
http://refhub.elsevier.com/S0306-15)30134-sbref3
http://refhub.elsevier.com/S0306-15)30134-sbref3
http://refhub.elsevier.com/S0306-15)30134-sbref4
http://refhub.elsevier.com/S0306-15)30134-sbref4
http://www.bpmcenter.org/wpontent/uploads/reports/2013/BPM-02.pdf
http://www.bpmcenter.org/wpontent/uploads/reports/2013/BPM-02.pdf
http://refhub.elsevier.com/S0306-15)30134-sbref5
http://refhub.elsevier.com/S0306-15)30134-sbref5
http://refhub.elsevier.com/S0306-15)30134-sbref6
http://refhub.elsevier.com/S0306-15)30134-sbref6
http://refhub.elsevier.com/S0306-15)30134-sbref7
http://refhub.elsevier.com/S0306-15)30134-sbref7
http://refhub.elsevier.com/S0306-15)30134-sbref8
http://refhub.elsevier.com/S0306-15)30134-sbref9
http://refhub.elsevier.com/S0306-15)30134-sbref9
http://refhub.elsevier.com/S0306-15)30134-sbref10
http://refhub.elsevier.com/S0306-15)30134-sbref10
http://refhub.elsevier.com/S0306-15)30134-sbref11
http://refhub.elsevier.com/S0306-15)30134-sbref11
http://refhub.elsevier.com/S0306-15)30134-sbref12
http://refhub.elsevier.com/S0306-15)30134-sbref12
http://www.bpmcenter.org/wpontent/uploads/reports/2013/BPM-26.pdf
http://www.bpmcenter.org/wpontent/uploads/reports/2013/BPM-26.pdf
http://refhub.elsevier.com/S0306-15)30134-sbref13
http://refhub.elsevier.com/S0306-15)30134-sbref13
http://refhub.elsevier.com/S0306-15)30134-sbref13
http://refhub.elsevier.com/S0306-15)30134-sbref14
http://refhub.elsevier.com/S0306-15)30134-sbref14
http://refhub.elsevier.com/S0306-15)30134-sbref14
http://refhub.elsevier.com/S0306-15)30134-sbref15
http://refhub.elsevier.com/S0306-15)30134-sbref15
http://refhub.elsevier.com/S0306-15)30134-sbref16
http://refhub.elsevier.com/S0306-15)30134-sbref16
http://refhub.elsevier.com/S0306-15)30134-sbref17
http://refhub.elsevier.com/S0306-15)30134-sbref17
http://refhub.elsevier.com/S0306-15)30134-sbref17
http://refhub.elsevier.com/S0306-15)30134-sbref18
http://refhub.elsevier.com/S0306-15)30134-sbref18
http://refhub.elsevier.com/S0306-15)30134-sbref18
http://refhub.elsevier.com/S0306-15)30134-sbref19
http://refhub.elsevier.com/S0306-15)30134-sbref19
http://refhub.elsevier.com/S0306-15)30134-sbref20
http://refhub.elsevier.com/S0306-15)30134-sbref20
http://refhub.elsevier.com/S0306-15)30134-sbref21
http://refhub.elsevier.com/S0306-15)30134-sbref21
http://refhub.elsevier.com/S0306-15)30134-sbref22
http://refhub.elsevier.com/S0306-15)30134-sbref22
http://refhub.elsevier.com/S0306-15)30134-sbref23
http://refhub.elsevier.com/S0306-15)30134-sbref23
http://refhub.elsevier.com/S0306-15)30134-sbref24
http://refhub.elsevier.com/S0306-15)30134-sbref24
http://refhub.elsevier.com/S0306-15)30134-sbref25
http://refhub.elsevier.com/S0306-15)30134-sbref25
http://refhub.elsevier.com/S0306-15)30134-sbref26
http://refhub.elsevier.com/S0306-15)30134-sbref26
http://refhub.elsevier.com/S0306-15)30134-sbref27
http://refhub.elsevier.com/S0306-15)30134-sbref27
http://refhub.elsevier.com/S0306-15)30134-sbref27
http://refhub.elsevier.com/S0306-15)30134-sbref28
http://refhub.elsevier.com/S0306-15)30134-sbref28

	Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs
	Introduction
	Background
	Event log basics
	Data quality dimensions
	Patterns basics

	Related work
	Process mining data quality framework
	Event log imperfection patterns
	Case study
	Preliminary
	Event Log Imperfection Patterns observed in the hospital data
	Occurrence in other data sets

	Evaluation
	Evaluation results

	Conclusion
	Acknowledgements
	References

