
The VLDB Journal 10: 316–333 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100056

Global transaction support for workflow management systems:
from formal specification to practical implementation

Paul Grefen, Jochem Vonk, Peter Apers

Computer Science Department, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
E-mail:{grefen,vonk,apers}@cs.utwente.nl

Edited by P. Bernstein. Received: 16 November 1999 / Accepted 29 August 2001
Published online: 6 November 2001 –c© Springer-Verlag 2001

Abstract. In this paper, we present an approach to global
transaction management in workflow environments.The trans-
action mechanism is based on the well-known notion of com-
pensation, but extended to deal with both arbitrary process
structures to allow cycles in processes and safepoints to allow
partial compensation of processes. We present a formal speci-
fication of the transaction model and transaction management
algorithms in set and graph theory, providing clear, unam-
biguous transaction semantics. The specification is straight-
forwardly mapped to a modular architecture, the implementa-
tion of which is first applied in a testing environment, then in
the prototype of a commercial workflow management system.
The modular nature of the resulting system allows easy distri-
bution using middleware technology. The path from abstract
semantics specification to concrete, real-world implementa-
tion of a workflow transaction mechanism is thus covered in a
complete and coherent fashion. As such, this paper provides a
complete framework for the application of well-founded trans-
actional workflows.

Keywords: Transaction Management – Long-running trans-
action – Compensation – Workflow management

1 Introduction

Advanced information technology support for process-
centered environments like workflow management applica-
tions has widely been marked as an important field of research
and development. In this context, extended transaction mech-
anisms are considered a prerequisite to provide high-level se-
mantics for complex, long-running processes like workflows
(see e.g. [31, 2, 11, 45]). Most existing extended transaction
models and systems implementing these models, however,

The work presented in this paper is supported by the European Com-
mission in the WIDE project (ESPRIT No. 20280). Partners in WIDE
are Sema Group and Hospital General de Manresa in Spain, Politec-
nico di Milano in Italy, ING Bank and University of Twente in the
Netherlands. A short and earlier version of this paper has appeared
in the proceedings of the CoopIS’99 conference [26].

have complex semantics with an operational, informal speci-
fication. This clearly limits their applicability in complex ap-
plication scenarios. Also, they are mostly used in prototype
implementations in academic research contexts only.

In this paper, we address this problem by bridging the
gap between formal specification and practical application
of high-level transaction management for workflow environ-
ments. The transaction model used in the presented approach
features relaxed transactional properties and rollback through
compensation. Relaxed transactional properties are required
for long-living, co-operative processes like workflows to avoid
complete undo of performed work and to facilitate sharing
of intermediate results of processes. Compensation allows
rollbacks in relaxed transactional processes. Our transaction
model is based on the existing saga model [19], but is applica-
ble to general process structures including cycles and adds the
notion of partial compensation through the use of safepoints.
Support for cycles is an important feature, as many practi-
cal workflow applications contain cyclical process structures,
e.g., to obtain a business goal in an iterative way or to retry a
specific business function. Partial compensation is important
in practice to have a flexible means to control the scope of a
process rollback.

In this paper, we present a formalization in set and graph
theory of both high-level transaction model concepts and
transaction management algorithms. This formalization pro-
vides clear semantics for the operational aspects of the trans-
action model. These semantics are not obvious from infor-
mal descriptions in complex scenarios, which are common
in process-centric environments like workflow management
applications. Optimization aspects as described in this paper
further complicate matters semantically and thus strengthen
the need for formal semantics. The formal ingredients used
in the approach are of a well-accepted nature, thus allowing
for practical use of the presented work. We show how the for-
mal function specification can easily be mapped to a modular
system architecture.

The model and mechanisms presented in this paper have
been applied in the global transaction support developed in
the WIDE (Workflow on Intelligent Distributed database En-
vironment) ESPRIT project. In this project, advanced database
technology is developed to support next-generation process-



P. Grefen et al.: Global transaction support for workflow management systems 317

oriented applications like workflow management [8, 25]. One
of the major parts of the database technology developed in
WIDE is a two-level transaction management subsystem,
which is informally described in [23, 25]. The upper level
of the subsystem caters for global transactions as formally
described in this paper. The lower level caters for individual
business transactions. The transaction management subsys-
tem has been integrated with the commercial FORO workflow
management system developed by Sema Group [18]. The re-
sultingWIDE transactional workflow management system has
been applied in real-world insurance and healthcare applica-
tions.

In short, the contribution of this paper is threefold. Firstly,
we extend the well-known basic saga model to deal with com-
plex process structures and partial compensation. In doing so,
we obtain an extended transaction model that is well usable in
practical workflow contexts. Secondly, we show that it is pos-
sible to provide a precise though simple formal specification of
the advanced transaction management mechanism implement-
ing this model, thus giving a complete operational semantics of
transaction management in the context of this model. Thirdly,
we demonstrate that an implementation of this mechanism
can be integrated into a modular, loosely coupled architec-
ture of a commercial workflow management system. The re-
sulting architecture allows flexible distribution of transaction
management. Altogether, we provide a complete framework
for the application of advanced, compensation-based transac-
tion management to practical workflow management, thereby
bridging the gap existing between these two domains.

1.1 Structure of this paper

The structure of this paper is as follows. In Sect.2, we infor-
mally discuss the WIDE transaction model as the context for
the formal treatment of transaction processing in the sequel of
this paper. The notion of global transaction as defined in the
WIDE model is central in this paper. Sect.3 discusses the for-
mal specification of global transactions in terms of specifica-
tion graphs. In Sect.4, we show how execution graphs are dy-
namically constructed from specification graphs during trans-
action execution. Execution graphs model the execution state
of a global transaction. Section 5 presents the formal specifi-
cation of algorithms for handling workflow process rollbacks.
These algorithms describe the dynamic generation of compen-
sating global transactions from execution graphs. We end this
section with a short discussion of the practical applications of
the formalism. One of these applications is using the specifi-
cation of the algorithms in the implementation of a transaction
support subsystem. The architecture that provides the overall
structure for this implementation is discussed in Sect.6. We
present a general abstract architecture, a concrete architecture
in the context of the FORO workflow management system,
and a distributed architecture. In doing so, we show how the
formal specification can be directly mapped onto the architec-
ture, thus providing a complete path from formal semantics to
practical implementation of transaction management. We pro-
vide a discussion of related work in Sect.7, subdivided into
four related areas of research. The paper is ended with con-
clusions and a short discussion of possible extensions to the
presented work.

2 Context

In this section, we present the background of the transaction
management approach elaborated in this paper. We first dis-
cuss the overall two-layer transaction model as it has been
adopted in the WIDE project. Then we focus on the upper
level of this model by informally describing global transac-
tion management. We introduce an example that is used in the
next sections to illustrate algorithms.A formal specification of
global transaction management presenting precise semantics
follows in the next sections of this paper.

2.1 Two-layer transaction model

In the WIDE transaction model [23], two orthogonal trans-
actional layers are identified to deal with the different re-
quirements of high-level (long-living) and low-level (rela-
tively short-living) business processes. In most applications,
both types of processes exist, as low-level processes are sub-
processes of high-level processes. The WIDE model has been
designed to cater for process-centric applications like work-
flow management, where complex transactions of long dura-
tion and a high level of cooperativeness are required.

The bottom layer of the WIDE transaction model provides
local transactionswith strict transactional (ACID) require-
ments [5]. Local transactions operate on persistent data (both
workflow and application data), using traditional transaction
mechanisms to enforce the ACID properties, most notably
atomicity and isolation. Local transactions coincide with busi-
ness transactions in the business process application, i.e., parts
of a process that have atomic behavior from an application-
oriented view. The set of business transactions in an applica-
tion forms a partition of the complete process. Details of local
transactions are not relevant in this paper.

The top layer providesglobal transactionswith relaxed
transactional properties. In the global transaction layer, local
transactions are used as black box atomic processes (steps in
the global transaction) that comply with theACID properties –
as guaranteed by the local transaction layer. The two-layer ap-
proach thus provides a good basis for a separation of concerns
in complex transaction management. Relaxation of transac-
tional properties at the global transaction layer is reflected
in relaxed notions of isolation and atomicity. This relaxation
caters for the needs of cooperative workflow processes above
the business transaction level.

Isolation in the global transaction model is relaxed by mak-
ing intermediate results of steps visible to the context of the
global transaction (i.e., local transactions commit their results
to the shared database), such that they are accessible to other
global transactions. In line with this shared database approach,
there is no explicit data flow and consequently no data-oriented
synchronization within or between workflow instances at the
global transaction level. Note, however, that the local transac-
tion layer takes care of traditional concurrency control.

To obtain relaxed atomicity, rollback operations in the
global transaction layer should have application-specific se-
mantics instead of the database-oriented semantics of the local
transaction model. For these reasons, we have chosen a global
transaction model that is based on the saga transaction model



318 P. Grefen et al.: Global transaction support for workflow management systems

[19], extended with a flexible mechanism for partial rollback.
As in the saga model, relaxed atomicity is obtained by using
a compensation mechanism to provide rollback functional-
ity. Rollback of global transactions is performed by executing
a compensating global transaction that consists of compen-
sating local transactions. A compensating local transaction is
included for each local transaction that has been committed
in the failing global transaction. Running, not-yet-committed
steps can simply be aborted, as they are atomic local trans-
actions. Operations in compensating steps are application-
dependent and have to be specified by the application designer.

Steps in a workflow can be marked assafepoints. A safe-
point is a step in a workflow from where forward recovery
can safely be started after a global rollback has been com-
pleted (comparable to compensation points in the OpenPM
approach [14]) and hence a point where compensation can
end. As such, safepoints provide ways to flexibly specify par-
tial rollback strategies dealing with abort situations occurring
in different parts of a global transaction. Unlike safepoints in
the saga model [19], global transaction safepoints do not re-
quire making checkpoints. Like the functionality of compen-
sating steps, placement of safepoints in a global transaction is
fully application-dependent.

The WIDE workflow model also includes exception prim-
itives to model non-standard behavior of applications [7, 25].
An exception is specified as an Event-Condition-Action (ECA)
rule, stating when and under which conditions a separately
specified subflow is triggered by a workflow process. A de-
coupled execution model [54] is used for exceptions in the
WIDE approach, i.e., the clauses of an ECA rule are evaluated
in separate transactions. Consequently, exception handling is
completely orthogonal to transaction handling. For this rea-
son, we will not discuss exceptions explicitly in this paper.

2.2 Global transaction model

A WIDE global transaction specification consists of a rooted
directed graph of global transaction steps (local transactions).
Thespecification graphis rooted as it can have only one start-
ing step. It can have an arbitrary number of ending steps. It can
contain various types of and/or-splits, and/or-joins, and cycles
to cater for complex process structures as found in workflow
applications (conforming to the WIDE conceptual workflow
model [7, 25]). The graph represents the possible execution
orders of the steps in the application process.

An example specification graph1 from a travel agency ap-
plication is shown in the left-hand side of Fig.1. The graph
models a high-level view of a process for selling and invoic-
ing trips. Start of the process is local transaction ‘sales’, in
which a trip is selected and configured. From there, a trip can
either be cancelled or booked (or-split). After booking, two
subprocesses proceed in parallel (and-split). The financial de-
partment calculates, files, invoices, and checks for incoming

1 For reasons of clarity, we use a simplified version of the WIDE
workflow process notation [7, 25], in which a diamond with a ‘1’-
symbol indicates an or-split or or-join, and a diamond with an ‘n’-
symbol indicates an and-split or and-join. An ‘s’-symbol in a process
step denotes a safepoint.

payment. The travel department prepares tickets and vouchers
and sends them to the customer. Invoicing and payment check-
ing may have to be iterated when a payment has not yet been
received. Sending the travel documents cannot take place be-
fore payment has been received. Local transaction ‘sales’ has
been specified as a safepoint. This means that in case of a pro-
cess rollback, the effects of ‘sales’ do not need to be undone
and process re-execution can start from ‘sales’.

Instantiations (executions) of a specification graph are de-
scribed in anexecution graphof a global transaction. As we
can have or-splits and cycles in a global transaction specifi-
cation, the specification graph and the execution graph of a
global transaction are different in general: paths that are not
executed in an or-split are not in the execution graph and cy-
cles are replaced by the instantiation of the iteration. Execution
graphs are thus rooted directed acyclical graphs (RDAGs).

The right hand side of Fig.1 shows a completed execution
graph of the example specification graph. In this execution,
the ‘cancel’ local transaction has not been executed and the
‘invoice-payment’ iteration has been executed twice. Note that
a single specification graph can lead to many different execu-
tion graphs. To reason about the dynamic properties of a global
transaction in execution, the execution graph is considered, not
the specification graph.

In the next section, we present a formalization of global
transactions and their execution. This formalization serves as
the basis for the compensation algorithms presented in the next
sections.

3 Transaction specification

This section formalizes the specification of global transac-
tions as outlined in the previous section. Global transactions
are directed graphs built from workflow process elements and
sequence relations between them. These two ingredients of
global transactions are discussed in the subsections below.
After that, we show how they are used together in the specifi-
cation of global transactions.

3.1 Workflow process elements

Workflow processes contain two types of elements: workflow
tasks that represent activities to be performed and workflow
connectors that provide the primitives to construct complex
process structures from these workflow steps.

Workflow tasks are specifications of atomic local transac-
tions in our model, as outlined in the previous section. A local
transaction specificationtspec is taken from the domainTspec

and has as attributes a name from the domainID, a task speci-
fication from the domainP (the domain of task programs), the
identifier of its compensating counterpart from the domainID,
and an indication whether the local transaction is a safepoint:

Tspec = 〈name : ID, task : P, comp : ID, safep : bool〉
In practice, workflow specification models and languages offer
different types of tasks to specify automatic tasks performed
by a system, manual tasks performed by a human actor, or



P. Grefen et al.: Global transaction support for workflow management systems 319

sales

cancel

book

prepare

send payment

invoice

calc file

1

n n

n

1

1

s

sales

book

prepare

send payment-2

invoice-2

calc file

invoice

payment Fig. 1.Example specification and execution
graphs

wait tasks to model explicit delays (wait states) in process
execution. The various types of tasks included in the WIDE
workflow model are described in detail in [7, 25]. In this paper,
we abstract from the specifics of tasks, as we view them as
atomic units of work.

Workflow connector elements represent the various types
of splits and joins found in workflow process definitions. A
split connectorcsspec is taken from the domainCSspec, a join
connectorcjspec from the domainCJspec. CSspec andCJspec

are both subtypes of the domain of general connectorsCspec:

Cspec = CSspec ∪ CJspec

Apart from its identification, the only relevant attribute of a
connector is the indication whether it is total (i.e., it is an
and-split or and-join as opposed to an or-split or or-join):

Cspec = 〈name : ID, total : bool〉
The selection expressions associated with an or-join are in-
cluded in the specification of sequence elements, as discussed
below. The WIDE workflow model offers a number of vari-
ations on the basic connector types, like iterative splits and
joins, and partial (k-out-of-n) joins [7, 25]. These can, how-
ever, all be handled in a similar way as the basic types – hence
they are not explicitly discussed in this paper.

Now we can define the set of workflow process node (ver-
tex) specificationsVspec as the supertype of the local transac-
tion specifications and the connector specifications:

Vspec = Tspec ∪ Cspec

3.2 Sequence elements

Where the workflow process elements defined above represent
the nodes in a workflow specification graph, the workflow
sequence elements represent the edges in a specification graph.
A sequence element (edge) specificationespec is taken from
the setEspec defined as follows:

Espec = 〈orig, dest : ID, cond : Xsel〉
Each sequence element has a workflow process element from
the domainVspec as origin and destination, identified by their
identifiers from the domainID. Further, a sequence element

has a condition identification from the domainXsel that spec-
ifies when the sequence element is active. The condition is
used to select between outgoing paths from an or-join – in
other cases the condition yieldsTRUEby default. The condi-
tion is evaluated by the workflow management system during
workflow enactment, usually on the basis of case data associ-
ated with a global transaction instance.The details of condition
evaluation are not relevant in the context of this paper.

3.3 Global transaction specification graph

Now we can define a global transaction specification graphG
as a tuple consisting of a set of workflow process elements and
a set of workflow sequence elements:

Gspec = 〈Vspec, Espec〉
The example global transaction specification in the left-hand
side of Fig.1 consists of a set of 15 process elements and 16
sequence elements.

As explained above, a global transaction specification is
an abstraction of a complete workflow specification, obtained
by removing all elements from the workflow specification that
are not relevant to transaction processing as described in this
paper. Although the global transaction specification model
is relatively simple, it is based on an advanced, full-fledged
workflow model [7, 25]. A comparable approach to workflow
abstraction is used in [44], where only nodes and edges of a
process model are the basis for the specification of the trans-
action model.

We introduce a number of basic operations on specification
graphs that we require in more complex functions. Starting
points of a specification graph are nodes without incoming
edges. Ending points are nodes without outgoing edges:

start(G) = {v ∈ G.V |¬ (∃w ∈ G.V ) (〈w, v〉 ∈ G.E)}
end(G) = {v ∈ G.V |¬ (∃w ∈ G.V ) (〈v, w〉 ∈ G.E)}

Functionspredvandsuccvcalculate the set of direct prede-
cessors, respectively direct successors of a vertexv in a graph
G:

predv(G, v) = {w ∈ G.V |〈w, v〉 ∈ G.E }
succv(G, v) = {w ∈ G.V |〈v, w〉 ∈ G.E }



320 P. Grefen et al.: Global transaction support for workflow management systems

We require that a correct specification graph have exactly one
starting point and at least one ending point. These constraints
are expressed as follows (wherecard is the set cardinality
function):

card(start(G)) = 1
card(end(G)) � 1

We assume that all connectors are modeled explicitly in spec-
ification graphs, i.e., all local transactions have at most one
incoming and one outgoing edge. This model can, however,
be easily adapted to cater for other models, e.g., specification
in UML activity diagrams [6] in which or-joins are implicit.

4 Transaction execution

This section formalizes the execution of global transactions,
based on the specification defined in the previous section. Put
shortly, global transaction execution takes a global transac-
tion specification graph as input and incrementally generates
a global transaction execution graph that is a representation of
the execution history of the global transaction.

Important elements of this section are the definition of
global transaction execution graphs, basic predicates and func-
tions defined on these graphs, and construction functions that
modify execution graphs during transaction execution. The
treatment in this section is the basis for the rollback (compen-
sation) algorithms in the next section. We start with formal-
izing local transactions, which are the ‘building blocks’ for
global transactions.

4.1 Local transactions

In the WIDE transaction model, local transactions are atomic
units of execution [23, 5].As such, instantiations of local trans-
actions form the elementary steps in instantiations of global
transactions. For reasons of brevity, we use the term ‘local
transaction’ to denote ‘instantiation of a local transaction’. Lo-
cal transactions are defined in the domainTloc, the domain of
local transaction identifiers. These identifiers are constructed
by suffixing the name attribute from local transaction specifi-
cations in the global transaction specification graph with local
transaction instantiation numbers. Instantiation numbers are
necessary to distinguish between multiple instantiations of the
same local transaction specification (as generated by cycles in
a specification graph). For clarity, we omit these numbers in
this paper.

We first define a function that yields the local transaction
specification that a local transaction is an instantiation of:

spec : Tloc → Tspec

A number of unary predicates is defined on the domain of
local transactions. Predicatesstartedandcommittedindicate
the execution state of a local transaction. They denote whether
the execution of a local transaction has begun, respectively, has
completed:

started : Tloc → bool

committed : Tloc → bool

Predicatessafe, dummy, and idempotentdenote semantic
properties of a local transaction – we need these predicates in
the construction of compensating global transaction specifica-
tion graphs. Predicatesafetests whether a local transaction is
a safepoint. Predicatedummytests whether a local transaction
has dummy semantics (i.e., does not have any effect). Predi-
cateidempotenttests whether a sequence of executions of a
local transaction has the same semantic effect as one single
execution. So we have:

safe : Tloc → bool

dummy : Tloc → bool

idempotent : Tloc → bool

The implementation of these predicates relies on the local
transaction specification an instantiation is based on:

safe(t) = spec(t).safep
dummy(t) = empty(spec(t).task)

idempotent(t) = idempotent(spec(t).task)

The idempotent predicate defined on tasks can be evaluated
automatically in simple cases, but will have to be indicated by
the task designer for the general case.

Two binary predicates are defined on the domain of local
transactions. Predicatetrig denotes that the first transaction
has dynamically triggered the second transaction during the
execution of a global transaction. Predicateequaldenotes that
two local transactions have equal semantics, i.e., are instanti-
ations of the same local transaction specification (but are not
necessarily in the same execution state):

trig : Tloc × Tloc → bool

equal : Tloc × Tloc → bool

The state-related predicates are not independent.A transaction
that is committed is started as well. Two local transactions can
only have a triggered relationship if the first transaction is
committed and the second transaction is started:

(∀v ∈ Tloc)(committed(v) ⇒ started(v))
(∀v, w ∈ Tloc)(trig(v, w) ⇒ committed(v) ∧ started(w))

Functioncompreturns the compensating counterpart of the
local transaction given as its argument or a dummy transaction
if the compensating counterpart does not exist:

comp : Tloc → Tspec

comp(t) =
{
spec(t).comp if spec(t).comp �= null
dummy if spec(t).comp = null

As remarked above, compensating counterparts of local trans-
actions have to be specified by an application designer. Be-
low, we use local transactions as components (atomic steps)
in global transactions.

4.2 Execution graph definition and basic operations

An execution graph of a global transaction models its execu-
tion history. It is a directed graph consisting of a set of ver-
tices corresponding to all started local transactions and a set



P. Grefen et al.: Global transaction support for workflow management systems 321

of edges corresponding to the triggering relationship between
these local transactions:

Gexec = 〈Vexec, Eexec〉
Vexec = {v ∈ Tloc |started(v)}
Eexec = {〈v, w〉 ∈ Vexec × Vexec |trig(v, w)}
We introduce a number of basic operations on execution graphs
that we require in the sequel of this paper. Like for specifica-
tion graphs, starting points of an execution graph are nodes
without incoming edges and ending points are nodes without
outgoing edges:

start(G) = {v ∈ G.V |¬ (∃w ∈ G.V ) (〈w, v〉 ∈ G.E)}
end(G) = {v ∈ G.V |¬ (∃w ∈ G.V ) (〈v, w〉 ∈ G.E)}

Functionpredscalculates the direct predecessors of a subgraph
S in a graphG, i.e., the set of vertices that have outgoing edges
ending in starting points of the subgraph:

preds(G,S) = {v ∈ G.V |〈v, w〉 ∈ G.E ∧ w ∈ start(S)}
The active transactions in an execution graph are the local
transactions that have not yet been committed. The active
edges are the edges ending in nodes corresponding to active
transactions:

activev(G) = {v ∈ end(G) |¬committed(v)}
activee(G) = {〈v, w〉 ∈ G.E |¬committed(w)}
As discussed in Sect.2.1, cycles in process specification graphs
are rolled out in execution graphs, so execution graphs are
acyclic. This constraint on the structure of execution graphs
can be expressed as shown below:

(∀v ∈ G.V ) (¬path(G, v, v))
path(G, v, w) ⇔ (〈v, w〉 ∈ G.E) ∨
(∃x ∈ V ) (〈v, x〉 ∈ G.E ∧ path(G, x,w))

Having completed the preliminaries, we can now turn to con-
structing execution graphs during global transaction execu-
tion.

4.3 Execution graph construction

During the execution of a global transaction, its execution
graph has to be maintained to properly reflect the status of
the execution. The details of the maintenance follow from the
specification of the global transaction. Basically, there are four
types of operations on execution graphs corresponding with
events in the lifecycle of a global transaction:

1. Creation of a new empty execution graphGexec when a
new global transaction instance is started on the basis of a
specification graph.

2. Addition of a new vertex (and corresponding edges) to
Gexec when a new local transaction is started as specified
in Gspec.

3. Replacement of a vertex (and corresponding edges) in
Gexec when a running local transaction is completed.

4. End of a global transaction.

These four operations are described formally below, using the
concepts introduced in the previous section.

Starting a global transaction. Starting a new global trans-
action corresponds to creating an empty execution graph:

startgt = 〈∅, ∅〉
After a global transaction has been created, local transactions
can be started in its context.

Starting a local transaction. A new local transaction is
started when a new task in the specification graph is instan-
tiated. Note that the execution of connector elements does
not change the execution graph itself, but can influence the
execution path through the specification graph (based on the
conditions in sequence elements).

Starting a new local transaction corresponds to adding a
new vertexw to the graph and connecting it to its set of di-
rect predecessors. The direct predecessors correspond to the
completed local transactions that triggered the new local trans-
action:

startlt(G,w) = 〈addv(G.V,w), adde(G.E,w)〉
addv(V,w) = V ∪ {w}
adde(E,w) = E ∪ {〈v, w〉 |trig(v, w)}

Ending a local transaction.Ending a local transaction means
replacing the corresponding vertexv in the graph by a new
vertexw that is equal except for its state2:

endlt(G, v) = 〈changev(G.V, v), changee(G.E, v)〉
changev(V, v) =

{
w ∈ Tloc |(w ∈ V ∧ w �= v) ∨
(equal(w, v) ∧ committed(w))

}

changee(E, v) = {〈x, y〉 ∈ E |y �= v }
∪

{
〈x,w〉 ∈ Tloc × Tloc

∣∣∣∣ 〈x, v〉 ∈ E∧
equal(w, v) ∧ committed(w)

}

Figure 2 shows two partial execution graphs, resulting from
the execution of the specification graph in Fig.1. In the left-
hand side graph, three steps have been completed (indicated
by shading). Steps ‘file’ and ‘invoice’ are currently being ex-
ecuted. This graph has been constructed by onestartgt, five
startlt, and threeendlt operations as specified above. In the
right- hand side graph, these two steps have been completed
and steps ‘prepare’ and ‘payment’ are being executed (two
morestartlt and two moreendlt operations have been exe-
cuted).

Ending a global transaction. A global transaction is ended
after the last task conforming to the global transaction specifi-
cation graph has been ended. Ending a global transaction does
not change the execution graph:

endgt(G) = G

The operations discussed in this section are used in normal
global transaction processing, i.e. without the occurrence of
global aborts. Now we turn our attention to handling global
abort situations.

2 Note that it is not possible to simply update the state of a vertex,
given our declarative approach to algorithm specification.



322 P. Grefen et al.: Global transaction support for workflow management systems

sales

book

invoice

calc

S

file

sales

book

prepare

payment

invoice

calc

S

file

Fig. 2.Partial execution graphs

5 Global transaction compensation

In this section, we present the algorithms used for compensat-
ing global transaction when a global abort situation arises. Put
shortly, compensation is performed by dynamically generat-
ing and executing a compensating specification graph, based
on the analysis of the execution graph of a global transaction.

We start this section with an informal introduction to
global transaction compensation. Then, we formally discuss
the generation of complete and partial compensation graphs,
as required to perform complete, respectively, partial rollback
(abort) of global transactions.

In the formal treatment, we first present the compensation
driver, i.e., the high-level function used to invoke a global com-
pensation. Next, we present the algorithms for the construc-
tion of complete and partial compensation graphs. Finally, we
show how compensation graphs can be made more efficient
by filtering out unnecessary steps.

5.1 Informal introduction

An example of a global transaction execution requiring global
rollback is shown in the left part of Fig.3. Here, we see an
execution graph corresponding to the specification graph in
Fig.1, at a point where the global transaction has partly been
completed. The grayed steps have been committed; two steps
are being executed. Local transaction ‘sales’has been specified
to be a safepoint. Now assume that running local transaction
‘payment’ raises an error that requires global rollback. Then
all running local transactions (‘prepare’ and ‘payment-2’) are
aborted (using the local transaction mechanism). Next, the ex-
ecution graph needs to be compensated from the point where
the error occurred until a safepoint is encountered (to the start
of the graph if none is found). This means that compensation
is performed by executing the dynamically constructed global
transaction depicted in the right-hand side of Fig.3. In this
figure, the prefix ‘c’ for a local transaction indicates its com-
pensating counterpart. The details of the construction of this
example compensating transaction are discussed in the sequel
of this section. Note that a very simple example is chosen for
reasons of clarity. In general, compensating global transac-
tions can have a complex structure consisting of many local
transactions (a more complex example follows in this paper).

5.2 Compensation driver

A compensation request is invoked by functionabort, which is
parameterized with the requested abort modem (complete or

sales

book

prepare

payment-2

invoice-2

calc

S

file

payment

invoice

c-calc

c-invoice

c-invoice

c-payment

c-file c-book

start

Fig. 3.Partial execution and compensation graphs

partial), the identifiern of the global transaction to be aborted,
and the identifierv of the global transaction step that caused the
rollback. The function returns the name of the compensating
global transaction specification and the list of restart points in
the original global transaction execution graph. Restart points
are points in an execution graph from where forward execution
can take place after compensation. Functionabort performs
the following steps:

1. It retrieves the execution graph of the aborted global trans-
action from persistent storage.

2. It computes the compensating specification graph plus the
restart points in the original graph.

3. It generates a name for the compensation graph and stores
the specification of the graph into persistent storage.

So we have:

abort(m,n, v)
= storespec(gcomp(m, getexec(n), v), newid(n))

Functiongetexecretrieves the execution graph from persistent
storage based on the global transaction identifiern and returns
it as its result. Functionstorespectakes a compensation graph
plus identifier generated bynewidas input and stores the graph
as specification graph in persistent storage; it produces no
result.

Functiongcomp is used to calculate the compensation
specification graph for a given abort mode, execution graph,
and failure point. It distinguishes between complete compen-
sation and partial compensation. In case of a partial compen-
sation, the restart points in the execution graph have to be
calculated. Hence, the result type ofgcompis a pair of com-
pensation graph and set of local transactions.

gcomp(m,G, v) =
{ 〈ccomp(G), ∅〉 if m = complete
pcomp(G, v) if m = partial

Functionsccompandpcompare discussed in detail below.

5.3 Complete compensation

When rollback of a global transaction is required, a compen-
sating global transaction specification has to be constructed.
This compensating global transaction is based on the execu-
tion graph of the global transaction that has to be rolled back.
In this section, we discuss calculating complete compensation
graphs, i.e., compensation graphs that ‘cover’ the complete ex-
ecution graph. A complete compensation graph is constructed
from an execution graph in the following five steps:



P. Grefen et al.: Global transaction support for workflow management systems 323

sales

book
calc

S

file

invoice

payment

invoice-2

c-sales

c-book

c-invoice

c-calc

S

c-file

c-invoice

c-payment

Fig. 4.Steps 1 and 2 in complete compensation graph construction

1. The active local transactions are removed from the graph;
they have been rolled back by the local transaction mecha-
nism and are of no concern to the global transaction mech-
anisms.

2. The vertices in the graph are replaced by their compensat-
ing counterparts to obtain the functional elements for the
compensating global transaction. Note that this step effec-
tively transforms an execution graph into an ‘intermediate
form’ specification graph. This form is independent from
the concrete process specification model (the latter is dealt
with in step 5 below).

3. The edges in the graph are reversed to obtain the correct
flow control for the compensating global transaction (the
inverse of the flow control of the ‘original’ global transac-
tion).

4. If the graph resulting from the previous steps contains mul-
tiple starting points, a unique starting point is added to the
graph and connected to the ‘original’ starting points.

5. Explicit connectors are added to the specification graph to
make it compliant with the concrete process specification
model defined in Sect.3.

This five-step process is reflected in the formula below.
Each of the steps is described in detail in the sequel.

ccomp(G)
= insconn(addstart(compe(compv(strip(G)))))

Stripping an execution graph. An execution graph is
‘stripped’ of its active transactions by removing the vertices
corresponding to active local transactions plus edges ending
in these vertices:

strip(G) = 〈G.V \activev(G), G.E\activee(G)〉
The stripped version of the execution graph from Fig.3 is
shown in the left-hand side of Fig.4.

Compensating vertices. Vertices are compensated by ex-
changing execution graph vertices by their compensating spec-
ification counterparts and reorganizing the edges in the graph
to point to the new vertices. Functioncompvimplements this
functionality:

compv(G) = 〈exchangev(G.V ), exchangee(G.E)〉
exchangev(V ) = {v ∈ Tloc |v = comp(w) ∧ w ∈ V }
exchangee(E) = {〈v, w〉 ∈ Tloc × Tloc|〈x, y〉 ∈ E ∧

v = comp(x) ∧ w = comp(y)}
The result of applying this second step to the stripped example
execution graph is shown in the right-hand side of Fig.4. This

c-calc

c-invoice

c-invoice

c-payment

c-file c-book c-sales c-calc

c-invoice

c-invoice

c-payment

c-file c-book

start

c-sales

Fig. 5.Steps 3 and 4 in complete compensation graph construction

graph contains the required compensating actions, but not the
required flow control.

Inverting edges. Edges in a graph are inverted by simply
exchanging their start and end points:

compe(G) = 〈G.V, invert(G.E)〉
invert(E) = {〈v, w〉 |〈w, v〉 ∈ E}
The effect of applying edge inversion to the graph in Fig.4 is
depicted in the left-hand side of Fig.5 (note that the graph
has been graphically reordered to obtain the usual top-left
to bottom-right process flow). This graph contains both the
required functionality (i.e., the compensating tasks) and flow
control, but lacks a unique starting point.

Ensuring a single starting point. A single starting point for
the compensation graph is ensured by adding a new vertex
if the ‘original’ graph has multiple starting points. Edges are
added between the new vertex and the ‘original’starting points.
The new starting point has dummy semantics, represented by
the empty stept∅.

addstart(G)
= 〈G.V ∪ addstartv(G), G.E ∪ addstarte(G)〉

addstartv(G) =
{∅ if card(start(G)) = 1

{t∅} if card(start(G)) > 1

addstarte(G)

=
{∅ if card(start(G)) = 1

{〈t∅, v〉 |v ∈ start(G)} if card(start(G)) > 1

The graph in the left-hand side of Fig.5 contains two starting
points (‘c-file’ and ‘c-invoice’). Therefore, a single starting
point is added as shown in the right hand side of the figure.
The graph represents the complete compensating global trans-
action, but without explicit connectors.

Inserting explicit connectors. The intermediate form spec-
ification graph obtained through the previous steps does not
contain any explicit connectors yet. And-split and and-join
connectors are implicit in nodes that have multiple outgoing,
respectively, multiple incoming edges (note that a compensat-
ing process does neither contain or-splits nor or-joins):

multiout(G) = {v ∈ G.V |card(succv(v)) > 1}
multiin(G) = {v ∈ G.V |card(predv(v)) > 1}

Functioninsconncomputes a new specification graph in which
the set of nodes is extended with the set of required explicit



324 P. Grefen et al.: Global transaction support for workflow management systems

connectors and the set of edges is computed by leaving out the
edges involved in implicit connectors and adding the edges
required for the explicit connectors:

insconn(G) = 〈G.V ∪ newconn(G), (G.E\deledges(G))
∪ newedges(G)〉

The set of required explicit connectors is easily established
as follows (note that we give the explicit connectors the same
ID as the nodes involved in the implicit splits and joins to
‘connect’ them easily):

newconn(G) = newsplit(G) ∪ newjoin(G)
newsplit(G) = {〈n,TRUE〉 ∈ CSspec|

(∃v ∈ multiout(G))(v.name = n)}
newjoin(G) = {〈n,TRUE〉 ∈ CJspec|

(∃v ∈ multiin(G))(v.name = n)}
The superfluous edges in the new graph are also easily deter-
mined:

deledges(G) = {〈v, w〉 ∈ G.E|v ∈ multiout(G) ∨ w
∈ multiin(G)}

The new edges are determined per explicit connector in the
following way:

newedges(G) =
⋃

v∈multiout(G)

newedgeslocs(G, v) ∪
⋃

v∈multiin(G)

newedgeslocj(G, v)

newedgeslocs(G, v)
= {〈v, w〉 |w ∈ newsplit(G) ∧ v.name = w.name} ∪

{〈x,w〉|x ∈ newsplit(G) ∧ v.name = x.name

∧ w ∈ succv(v)}
newedgeslocj(G, v)

= {〈v, w〉 |v ∈ newjoin(G) ∧ v.name = w.name} ∪
{〈x,w〉|w ∈ newjoin(G) ∧ v.name = w.name ∧
x ∈ predv(v)}

The application of the above function of the intermediate com-
pensation graph depicted in the right hand side of Fig.5 results
in the completed compensation graph depicted in Fig.6.

5.4 Partial compensation

Partial compensation of a global transaction requires compen-
sation of a part of the execution graph, starting from a rollback
point and delimited by the proper safepoints in the graph. A
simple example has already been presented in Fig.3, where
task ‘sales’ of the execution graph is not compensated in the
compensation graph because it is a safepoint.

As execution graphs can be arbitrarily complex, the situ-
ation is usually not as simple as depicted in Fig.3. The prob-
lem is finding the proper subgraph of the execution graph to
be compensated, taking into account safepoints and forward

c-calc

c-invoice

c-invoice

c-payment

c-file c-book

start

c-sales

n

n

Fig. 6.Step 5 in complete compensation graph construction

and backward dependencies between tasks in the graph. This
section presents the algorithms required to calculate the ap-
propriate subgraph of the execution graph.

Calculating a partial compensation graph. A partial com-
pensation graph is constructed by first calculating the proper
subgraph of the execution graph to be compensated and next
using the complete compensation algorithm of Sect.5.3. The
direct predecessors of the subgraph to be compensated become
restart points. Functionpcompis thus specified as follows:

pcomp(G, v)
= 〈ccomp(sgraph(G, v)), preds(G, sgraph(G, v))〉

sgraph(G, v) = extend(〈{v} , ∅〉, G)

Functionextendis used to calculate the subgraph starting from
the local transaction that caused the abort; it is specified below.

Calculating a subgraph to be compensated.The subgraph
to be compensated is calculated from the vertex where the
partial abort originated. From this vertex, we first construct a
subgraph consisting of predecessors of the vertex until safe-
points are encountered (extending the subgraph backward).
Next, we extend this subgraph forward by including all ver-
tices reachable from the subgraph.

extend(S,G) = extforw(extback(S,G), G)

Extending a subgraph backward is performed by function
extbackin a recursive fashion until the subgraph has reached
a stable size, i.e., does not grow anymore. Functionextback
uses functionbackstepto extend a graph one step:

extback(S,G)

=
{
S if S = backstep(S,G)
extback(backstep(S,G), G) otherwise

backstep(S,G)
= 〈backstepv(S,G), backstepe(S,G)〉

backstepv(S,G)
= {v ∈ G.V |v ∈ S.V ∨ (〈v, w〉 ∈ G.E ∧

w ∈ S.V ∧ ¬safe(v))}
backstepe(S,G) = {〈v, w〉 ∈ G.E |w ∈ S.V ∧ ¬safe(v)}
Extending a subgraph forward is performed in a similar man-
ner: functionextforwextends a subgraph in a recursive fashion
until the subgraph has reached a stable size:



P. Grefen et al.: Global transaction support for workflow management systems 325

A
S

S

B

C D E

F G H

I J K L

M N

P Q

O

R

A
S

S

B

C D E

F G H

I J K L

M N

P Q

A
S

S

B

C D E

F G H

I J K L

M N

P Q

Fig. 7.Execution graph, backward extension, and forward extension

extforw(S,G)

=
{
S if S = forwstep(S,G)
extforw(forwstep(S,G), G) otherwise

forwstep(S,G) = 〈forwstepv(S,G), forwstepe(S,G)〉
forwstepv(S,G)
= {v ∈ G.V |v ∈ S.V ∨ (〈w, v〉 ∈ G.E ∧ w ∈ S.V )}
forwstepe(S,G) = {〈v, w〉 ∈ G.E |v ∈ S.V }

Figure 7 shows an example of subgraph calculation. In the top
of the figure, an execution graph is depicted. Steps B and J are
safepoints (indicated by thes symbols) and steps O and R are
currently being executed, i.e. started but not yet committed.
Now suppose step R invokes a rollback operation. Then first,
running steps O and R are aborted using the atomicity control
functionality of the underlying local transaction mechanism.
Next, compensation processing is initiated by determining the
subgraph to be compensated. Backward extension as described
above takes place from step Q (being the direct predecessor
of step R that caused the rollback), as depicted in the mid-
dle graph of the figure by the half-grayed steps. Informally,
backward extension means searching for all predecessors of a
given step until safepoints are encountered. Finally, forward
extension takes place as shown in the bottom graph. Infor-
mally, forward extension means finding all successors of a
given subgraph. Note that the subgraph to be compensated
includes safepoint J, as this point is covered by forward exten-
sion. Figure 8 shows the final compensation graph, obtained
by applying the algorithms of Sect.5.3 to the calculated sub-
graph. In this figure, a step X−1 denotes the compensating
counterpart of step X.

F-1G-1H-1

I-1J-1K-1L-1

M-1N-1

P-1Q-1

Fig. 8.Compensation graph corresponding with Fig.7

5.5 Compensation graph filtering

Compensation graphs constructed as discussed above can be
made more efficient by filtering out steps that are semantically
unnecessary.Two typical classes of unnecessary steps are steps
with dummy semantics and steps with idempotent effects in
sequences. More advanced types of filtering are possible too,
e.g., replacing sequences of compensating steps by composite
compensation steps (steps that undo the effects of multiple
‘original’ steps in a more efficient manner), or filtering of not
strictly necessary steps based on actual system load.

A second-order functionfilter is used to construct a func-
tional composition of various functions that each perform one
of the filtering algorithms, e.g., the ones mentioned above.
This function takes a specification graph and a list of filter
functions as its arguments:

filter(G,< filter1, . . . , filtern >)
= (filter1 ◦ · · · ◦ filtern)(G)

Functionfilter thus provides the function of a filter driver, al-
lowing easy addition of new filtering functionality or selection
of filters for specific application classes.

Functionfilter can easily be applied in the compensation
driver discussed in Section 5.2, resulting in the following spec-
ification of functionabort (wheref is the list of filter func-
tions):

abort(m,n, v)
= storespec(addstart(filter(gcomp(m,
getexec(n), v), f)), newid(n))

Note that we have to reapply functionaddstart(as defined in
Section 5.3) above, as the filtering might remove the starting
point of a compensation graph. It is now used twice to keep
a clear separation of concerns between compensation graph
generation and compensation graph filtering.

Below, we show how filtering dummy steps and idempo-
tent steps can be specified as two filter functions using the
formalism introduced in this paper. Before, we first introduce
a general filtering function.

Filtering steps. Functionfilterf specified below is used to re-
move steps from a compensation graph that satisfy a predicate
f , wheref describes a characteristic of a step in the context of
its compensation graph. Removing these steps implies remov-
ing the corresponding vertices from the graph, removing all
edges connected to these vertices, and inserting new edges to
connect the vertices that were disconnected by the removals:

filterf(G, f) = 〈filterfv(G, f), filterfe(G, f)
∪ newfe(G, f)〉



326 P. Grefen et al.: Global transaction support for workflow management systems

F’G’H’

I’K’L’

M’N’

Q’

Fig. 9.Reduced compensation graph of Fig.8

filterfv(G, f) = {v ∈ G.V |¬f(G, v)}
filterfe(G, f) = {〈v, w〉 ∈ G.E |¬f(G, v)∧¬f(G,w)}
newfe(G, f) = {〈v, w〉 ∈ G.V ×G.V |

fconn(G, f, v, w)}
fconn(G, f, v, w) = (∃x ∈ succv(v))(f(G, x) ∧

(〈x,w〉 ∈ G.E ∨ fconn(G, f, x, w)))

Removing dummy steps.Local transactions may not have a
compensating counterpart because an inverse transaction has
not been specified by the application designer or simply does
not exist. An inverse transaction may not have been specified,
because undoing the transaction has no added value in a work-
flow process. Transactions for which an inverse does not exist
should be handled with great care. For all local transactions
that cause a relevant state change in a business process, in-
verse transaction should normally be specified. The inverse
may have a quite different implementation than the ‘original’
– for example, the inverse of giving out cash at an ATM may
be sending an invoice to the customer.

In constructing a compensating graph as discussed above,
transactions without compensating counterpart are replaced
by empty (dummy) compensating transactions. For reasons of
efficiency in compensation execution, these empty compensa-
tion transactions can be removed from the constructed com-
pensation graph by contracting it with respect to the nodes cor-
responding to empty compensation actions (dummies). This
functionality is quite easily specified in functionfilterd using
functionfilterf introduced above (note that predicatedummy
is context-free and thus does not require the compensation
graph as an argument):

filterd(G) = filterf(G, dummyf)
dummyf(G, v) = dummy(v)

We base an example on the compensation graph of Fig.8. As-
sume that steps P and J do not have compensating counterparts,
i.e., P−1 and J−1 are empty actions. Then these empty actions
can be removed from the graph, resulting in the compensation
graph shown in Fig.9.

Removing idempotent steps.An idempotent compensation
step is a step that produces the same effect no matter how
many times it is executed in sequence. If we have an appli-
cation step that modifies an application variable, a compen-
sation step could set this variable to a default value. Clearly,
the compensation step is idempotent: if in the workflow the
application step is executed several times in sequence, the
compensation needs to be executed only once. For this pur-
pose, we introduce functionfilteri that removes unnecessary
idempotent steps from a compensation graph. This predicate

GT

GT
Engine

GT
Instance

Persistent Storage

Process
Engine

GTProcess
Instance

1
2

3

4

Fig. 10.Abstract GTS architecture

idemf identifies idempotent steps that have only direct pre-
decessors with equal semantics (assuming the basic predicate
idempotentdefined on local transactions).

filteri(G, v) = filterf(G, idemf)
idemf(G, v) = idempotent(v) ∧ (∀w

∈ predv(G, v))(equal(v, w))

5.6 Application of the formalism

In the current and the previous sections, we have described a
complete, formal specification of algorithms for global trans-
action management as informally introduced in Sect.2.2. This
formal specification can be practically used in three ways:

• Firstly, the specifications provide a complete and unam-
biguous functional specification for the design of a trans-
action management subsystem. The high-level functions
completely specify the interfaces to the subsystem and the
lower-level functions completely specify the internals.

• Secondly, the specifications provide the basis for formal
analysis of transactional behavior of workflows during
workflow design. Given the unambiguous nature of the
algorithms, effects of transactional primitives like abort
can be statically analyzed in detail.

• Thirdly, the algorithms can be used as the basis for a simple
tool that provides on-the-fly insight in the effect of global
aborts during the execution of a workflow. Using partial
abort is practical in real-world business processes, but end
users invoking an abort should have the means to check
what part of a complex process will be affected by an abort.

In the next section, we move from formal algorithm spec-
ification to the design of software architectures implement-
ing the algorithms. In doing so, we focus on the first above
use of the formal specifications. More concretely, we show
in Sect.6.1 in detail how the formal functions can be mapped
onto software components.

6 Architecture

In this section, we present a system architecture designed to
support the transaction mechanisms discussed in the previ-
ous sections. We discuss the architecture in both an abstract



P. Grefen et al.: Global transaction support for workflow management systems 327

startgt

endgt

startlt

endltGT

setfilter

GT_Engine

abort

g
et

ex
ec

st
or

e
sp

ec

n
ew

id

Fig. 11.GT Engine and GT class interfaces

and a concrete version. The global transaction support (GTS)
subsystem is designed to serve in general process-oriented
systems requiring high-level transactional semantics. This ap-
proach is reflected below by discussing an abstract system ar-
chitecture supporting global transaction management. Next,
the concrete implementation of the GTS is discussed, which
is applied in a stand-alone test environment. The integration
of the GTS in the FORO workflow management system is
discussed, as realized in the WIDE project. FORO is a com-
mercial WFMS [18] marketed by Sema Group. Finally, we
show how the architecture can be extended to deal with dis-
tributed global transactions, i.e., global transactions that span
multiple process engines.

6.1 Abstract architecture

The abstract architecture of the GTS and its environment are
depicted in Fig.10. The left-hand side of the figure depicts the
GTS system that serves as a ‘transaction semantics server’.
The right-hand side of the figure shows the client process en-
actment system that uses the GTS system. At the bottom is
the persistent storage that holds non-volatile information like
global transaction specification and execution graphs; this may
be the same storage for the GTS and client system, but not nec-
essarily so.

The client system consists of a process engine and a num-
ber of process instance objects. The process engine interprets a
workflow process specification (i.e., a global transaction spec-
ification graph as defined in Sect.3) and performs scheduling
among process instances. Each process instance object repre-
sents a separate invocation of a process specification. It is con-
trolled by the process engine using interface❶ (see Fig.10).
The object holds all relevant status information of the pro-
cess instance. Process instance objects are created and deleted
dynamically at process invocation, respectively, process ter-
mination.

The GTS system consists of a GT engine and a number
of GT instance objects. The engine provides global rollback
functionality as described above. Each GT instance object rep-
resents a running global transaction and holds all relevant sta-
tus information, most importantly the execution graph of the
global transaction as defined in Sect.4. Like process instance
objects, GT instance objects are created and deleted dynami-
cally. GT objects implement the functions related to execution
graph maintenance defined in Sect.4.3.

Process instance and GT instance objects are coupled one-
to-one, as a process instance corresponds to a global transac-
tion instance. During its life cycle, a process instance object
informs its GT instance object of all relevant process events

Command Interface

Data Interface

Kernel
Logic

Control
Logic

Fig. 12.Internal GT engine architecture

through interface❷ , e.g. the start of a process step and the end
of a process step. These events are used by the GT instance to
update the state of the global transaction.

When the process engine signals a global abort for a pro-
cess instance, the GT engine is informed about this through
interface❸ . This corresponds to invoking functionabort as
specified in Sect.5.2. Next, the GT engine retrieves the exe-
cution graph of the global transaction from the correspond-
ing GT instance object, calculates the required compensating
global transaction, and stores the specification of this transac-
tion through the GT instance object (using interface❹ twice).
It then informs the process engine about the name of the com-
pensating transaction and the restart points in the original
transaction using interface❸ . These steps correspond with the
function calls specified in the compensation driver (function
abortas defined in Sect.5.2). The process engine executes the
compensating transaction and then restarts the original global
transaction at the indicated restart points.

The high-level functions for global transaction manage-
ment that we have introduced in Sections 4 and 5 of this paper
can be mapped directly to the abstract software architecture
shown in Fig.10.We have depicted this mapping in Fig.11. On
the left, we see the interfaces of the GTEngine object class, of
which a GT engine is instantiated. From Sect.5, we only have
the interface to functionabort. We have added an interface to
a functionsetfilterhere, to illustrate how the filter behavior of
the GT engine can be influenced. This function sets a complex
state variable in the GT engine the value of which is used as an
argument for functionfilter as introduced in Sect.5.5. On the
right side of the figure, we see the interfaces of the GT object
class, of which GT instances are created. Horizontally, we see
the interfaces used by the client system to the functions de-
fined in Sect.4 (through interface❷ in Fig.10). Vertically, we
see the interfaces to the functions required by the GT engine as
described in Sect.5.2. The interfaces of the classes correspond
to methods in the object-oriented paradigm.



328 P. Grefen et al.: Global transaction support for workflow management systems

Fig. 13.GTS front end

Note that the efficiency of the algorithms of the GT en-
gine (the performance of the module) is not too important,
since the engine deals with long-running workflow processes
in distributed environments. Efficient results of the GT engine
algorithms (i.e., efficient compensation graphs) are relevant,
however, as they determine the workload for the process en-
gine. The former observation enables straightforward imple-
mentation of the algorithms presented in this paper, without
too much attention to optimization. The latter observation is
the reason why we pay attention to compensation graph filter-
ing in the algorithms.

6.2 GTS software architecture

A GTS implementation has been realized in the WIDE project.
Below, we first discuss the internal architecture of the GT
engine. Then we show how the implemented GTS has been
used in a stand-alone test environment. In Sect.6.3, we will
turn to the integration in a WFMS architecture.

Internal GT engine architecture. The internal architecture
of the GT engine is based on the standard software module
architecture chosen in the WIDE project, as shown in Fig.12.

The GT engine communicates with its context through two
interfaces: the command interface to a process engine and the
data interface to GT instances. The command interface cov-
ers the ‘transaction semantics server’ functionality discussed
above. The data interface covers the connections to services
that the GT engine relies on. Both interfaces use a CORBA
mechanism [46] for communication with the environment (we
will address this further when discussing the integrated archi-
tecture below).

The internal logic of the GT engine is separated into control
logic and kernel logic. The former controls the internal oper-
ation of the engine and drives the interface logic. The latter
contains the algorithms for complete and partial compensa-
tion as described in this paper. In the current implementation,
the GT engine is single-threaded, i.e., it can handle one abort
request at a time. A multi-threaded version would easily be
feasible, however: this would mainly require changes to the

control logic and would leave the internals of the kernel logic
unaffected.

In the previous subsection, we have seen that the GTS
module mainly implements functionabort. To show how the
internal architecture of the GTS maps to the functional spec-
ification in the previous chapter, we recall the compensation
driver function from Sect.5.2:

abort(m,n, v) = storespec(gcomp(m,
getexec(n), v), newid(n))

Functionabort is implemented in the command interface as
shown in Fig.12. The command interface will perform some
input checking and delegate the actual execution of the func-
tion to the control logic. The control logic actually implements
the compensation driver, as specified in the function above.
From this function, the functionality ofgcompis allocated en-
tirely to the kernel logic. The kernel logic is stateless between
invocations ofgcomp. The data logic interfaces to thegetexec,
newid, andstorespecfunctions, which are allocated to the GT
instance objects, as shown in Fig.11.

Test environment. Because of the modular architecture de-
picted in Fig.10, the implementation of the GTS could easily
be tested in a stand-alone environment with mock-up process
engine and process instances. This stand-alone environment
allows software testing in completely controlled conditions.
It also allows to easily feed the GTS with specific rollback
situations to test its compliance with the algorithms outlined
in the previous sections of this paper.

To provide an easy-to-use user interface to the test envi-
ronment, a graphical front-end has been constructed using the
TCL/TK toolkit [47]. This front-end is shown in Fig.13. The
first window displays the operations on the execution and com-
pensation graphs and the communication actions of the GT
engine (in the window called ‘GTM’ for Global Transaction
Manager). The second window displays the communication
actions of a GT instance (in the window called ‘GT’). Using
the output in these windows, the dynamic behavior of the GTS
can be monitored.



P. Grefen et al.: Global transaction support for workflow management systems 329

GT

GT
Engine

GT
Instance

Basic Access Layer

Workflow
Interpreter

GTWorkflow
Case

DBMS

Fig. 14.FORO GTS architecture

6.3 IntegratedWFMS architecture

In the context of the WIDE project, the implementation of
the GTS is used in a prototype of the next generation of the
FORO workflow management system [8, 25]. FORO has been
equipped with both layers of the WIDE transaction support
(as discussed in Sect.2.1) to provide transaction management
functionality with both a high level of expressiveness and a
high level of flexibility, as required by complex workflow ap-
plication settings.

The architecture of the GTS module in the FORO context
is shown in Fig.14. This architecture is directly based on the
abstract architecture in Fig.10. The role of the process engine
in the abstract architecture is taken by the FORO workflow
interpreter. This module interprets workflow specifications in
the FORO process description language. Workflow case ob-
jects take the role of the process instance objects. Each case
object manages the process state of a workflow invocation. As
in the abstract architecture, case objects send messages to GT
objects to manage their transactional state.

The FORO architecture is implemented in a CORBA en-
vironment [46] that allows for flexible distribution in the ar-
chitecture [24]. Both GT engine and GT instances are imple-
mented as CORBA objects. This allows for a flexible coupling
of GT engines and workflow engines: if global rollbacks are
seldom, one GT engine can serve multiple workflow engines;
if global rollbacks are frequent, a workflow engine may use
multiple GT engines. The persistent storage consists of a Basic
Access Layer (BAL) and a commercial relational DBMS. The
BAL hides DBMS-specific details, such that easy portability
between DBMS platforms is achieved.

The modular approach to transaction management with
simple, high-level interfaces and well-defined semantics al-
lows for flexible system composition. As such, the resulting
system architecture can be considered a federation of work-
flow and transaction servers, based on middleware services
that hide distribution details.

6.4 Distributed GT architecture

The GTS architecture can be easily extended to deal with
global transactions that span multiple process engines. The

need for this functionality arises if multiple process engines
execute one overall process that requires transactional behav-
ior. This situation occurs for instance if multiple organiza-
tions or independent parts of organizations enact processes
that cross their boundaries.

In the distributed GT architecture, each GTM computes
compensation graphs for its part of the execution graph, using
the algorithms specified in this paper. Control over the over-
all compensation process is achieved through communication
protocols between the GTMs. To facilitate this communica-
tion, a second peer-to-peer command interface can be added
to the internal GT engine architecture as depicted in Fig.12.
The overall architecture of the distributed GTS is depicted in
Fig.15. In this figure,❺ is the peer-to-peer interface between
process engines used to coordinate distributed workflows. In-
terface❻ is the interface between GT engines used to coordi-
nate distributed rollbacks. Further details on the architecture
and communication protocols can be found in [51].

A variation on the distributed GT architecture is used in the
CrossFlow project. In this project, an architecture is designed
to deal with cross-organizational workflows in dynamic virtual
enterprise environments [27, 28]. In this context, distributed
global transactions exist that span the workflows of two or-
ganizations that have dynamically integrated their workflow
processing [52]. To support these transactions, GT engines
located in the workflow environments of two separate, au-
tonomous organizations have to cooperate.

7 Related work

In this section, we provide a discussion of work related to
this paper. We have divided the related work into four topic
areas: general work on advanced transaction models, specific
work on approaches to compensation in transaction manage-
ment, work on transactional workflows (or workflow transac-
tions), and formal approaches to transaction semantics. Note
that some of the work discussed below can be categorized in
multiple areas – in these cases we have chosen the area that we
considered most appropriate in painting a complete overview
of the field of work related to this paper.

7.1 Advanced transaction models and environments

Advanced (or extended) transaction models have been given
considerable attention in the past decade; see for example
[17, 34] for overviews. Typical examples of advanced transac-
tion models for long-running processes are nested transactions
[15, 16], multi-level transactions [53], sagas [19], and nested
sagas [20, 21]. General frameworks have been constructed,
like ACTA [10], that provide a conceptual framework for con-
structing or analyzing extended transaction models.

Low-level mechanisms have been proposed to provide a
‘tool-box’approach to advanced transaction management.The
best-known example in this category is probably the ConTracts
approach [48, 49]. ConTracts are not an extended transaction
model, but an environment that provides the basis for reliable
execution of long-lived computations. As such, the Contracts
approach have been used for the realization of transactional
workflows.



330 P. Grefen et al.: Global transaction support for workflow management systems

GT

Persistent Storage

Process
Engine

GTProcess
Instance

GT
Engine

GT
Instance

5

Comm Comm

6

GT

Persistent Storage

Process
Engine

GTProcess
Instance

GT
Engine

GT
Instance

Comm Comm

Fig. 15.Distributed GT architecture

In the WIDE project, an orthogonal two-level transaction
model is used to effectively model both long-running pro-
cesses and relatively short-running subprocesses [23]. In this
paper, we focus on the semantics of and support for the up-
per level of this model. This level is a transaction model with
relaxed ACID properties using a compensation mechanism
for rollback operations related to sagas as presented in [19].
Our approach to compensation is more comprehensive, how-
ever, in a number of ways. The separation of specification and
execution graphs provides a natural way to handle cycles in
processes. The concept of safepoint provides a flexible no-
tion of partial compensation. The optimizations discussed in
Sect.5.5 provide possibilities to reduce the cost of performing
compensations. The WIDE model is based on a single-level
process model, so it does not cover nested sagas [20, 21], but
can easily be extended in this direction.

A hybrid transaction model is also discussed in [9], in
which transaction hierarchies are described that contain flat
structured transactions. Dependencies between hierarchies are
supported by cross-hierarchy failure handling. In the WIDE
approach, nested processes with flat, structured levels are sup-
ported in the lower level of the transaction model. Dependen-
cies between nested constructs are represented in the upper
level of the transaction model, consisting of arbitrary process
graphs. Apart from differences in the transaction model itself,
the main difference between the work in [9] and that in this
paper, is that we aim at a formal specification of the semantics
of transaction mechanisms, instead of using text and pseudo-
code descriptions.

7.2 Compensation approaches

Compensation is nowadays generally considered a proper way
to handle application rollback, not only in workflow contexts.
The position of [4], for example, is that ‘every well-designed
TP application should include a compensating transaction type
for every type of transaction’. Compensation is not only used
for ‘direct’ rollbacks, but also as an ingredient to higher-level
notions. In the OPERA system, for example, compensation is
used in a flexible exception handling approach [30].

An advanced transaction compensation mechanism is dis-
cussed in [41] in the context of a multi-level transaction model.

The emphasis is on determining the horizon (dynamic appli-
cability) of compensation in nested structures, whereas we
concentrate on constructing compensation patterns for arbi-
trary process graphs. Our approach to partial compensation
can be used to bound the effects of compensation. Again, our
work contrasts to the work in [41] in the fact that we provide
a complete formal specification of compensating transaction
management mechanisms, whereas most other work relies on
informal descriptions.

Compensation is an important ingredient of the ConTracts
approach [48, 49]. The main difference with our work is the
fact that ConTracts rely on the specification of compensating
blocks to compensate groups of steps [49]. In our approach,
compensation graphs are dynamically constructed from com-
pensating steps for this purpose. Given the semantic struc-
ture of the ConTracts model, partial compensation has to be
‘applied with great care’ [49]. In the WIDE model, partial
compensation is usually the default approach. This is possible
because the consistency of the WIDE model is not as strictly
defined as those of the ConTracts model – it relies more on
application semantics.

The Coyote approach [12] also relies on compensation
to provide rollback functionality. In Coyote, compensation is
used in a conversational model for long-running transactions.
The work in the Coyote project is focused on application style
and system architecture issues – a formal background on the
compensation approach is not given.

7.3 Transactional workflows

As it has been widely recognized that transactional semantics
are an important aspect of workflow management, transaction
mechanisms dedicated for workflow environments have been
studied in recent years. A number of early proposals is dis-
cussed in [31] and a more recent overview is given in [11]. A
characterization of transactions in workflow contexts is given
in [2], stressing that advanced transaction management is in-
deed required, but not yet offered by existing systems. The
importance of transactional aspects of workflows in produc-
tion contexts is stressed in [45].

Work that focuses on high-level transaction management
for workflow environments has been performed in the Exotica



P. Grefen et al.: Global transaction support for workflow management systems 331

project [1]. Like the global transactions discussed in this paper,
the Exotica approach uses compensation to perform rollback
operations, as originally described by the saga model [19]. The
compensation mechanisms in Exotica are of a static nature,
however, and lack a formal specification as given in this paper.

In the FlowBack project [37], an approach similar to the
Exotica approach has been followed. Both in Exotica and
FlowBack, compensation plans are generated based on the
workflow specification. In the approach presented in this pa-
per, the actual workflow execution is the basis for compensa-
tion plan generation.

An approach to compensation in the context of IBM’s
FlowMark WFMS [43] is discussed in [44]. Where our ap-
proach to partial rollback is based on the notion of safepoints
in the workflow specification, the approach in [44] is based
on the notion of ‘spheres of joint compensation’. As such,
in our approach process annotations are made that impact a
complete workflow specification, whereas in the FlowMark
approach annotations are made that impact parts of workflow
specifications. The work in [44] presents an approach of how
to integrate compensation into FlowMark. Complete specifi-
cation of algorithms is not provided. At the time of writing
this paper, compensation functionality has not been realized
in FlowMark or its successor MQSeries Workflow [33]. A
prototype extension to provide basic support for compensa-
tion functionality has been realized in the CrossFlow project,
however [28, 52].

Compensation is an ingredient of the METEOR approach
[39]. The work includes specification of task compensation in
the WFSL workflow specification language and the enactment
of compensation. Complete algorithms for specification and a
formal semantics are not given, however. Handling of compen-
sation is also considered in the OpenPM project at Hewlett-
Packard [14], but detailed algorithms or a formal background
are not given in this work. Their notion of ‘compensation
points’ is comparable to our notion of safepoints. The seman-
tics of partial compensation are, however, specified very infor-
mally in [14] – we provide a precise, unambiguous specifica-
tion based on safepoints. The work on the Virtual Transaction
(VT) model at Hewlett-Packard [40] continues the work in the
context of OpenPM. A compensation model is used of which
‘compensation end points’ are comparable to our safepoints
and of which a ‘compensation strategy’distinguishes between
‘all’ and ‘reachable’ compensation modes – comparable to
our complete and partial compensation modes. The forward
rollback mechanism used after compensation provides three
alternative strategies (redo, alternate path, and terminate) that
are not included in the mechanism presented in this paper but
that can be added easily to our approach. Semantics of the VT
model are specified only informally, however, and mapping to
supporting systems is not dealt with in detail in [40].

The ObjectFlow approach to rollback on the business pro-
cess level in workflows relies on restoring process states [32].
This approach relies on persistence of data and can be con-
sidered orthogonal to the compensation approach: the former
approach relies on reinstalling a previous state whereas the lat-
ter approach tries to recompute a state equivalent to a previous
state. Equivalence in this context is an application-dependent
concept. In [32], extension of the ObjectFlow approach with
limited compensation functionality is considered, however.

The TSME approach aims at supporting transactional
workflows by providing a programmable transaction manage-
ment environment for workflow management [22]. As such,
the aim of TSME is comparable to that of the ConTracts
approach mentioned above. The dependency descriptors of
TSME can be compared to those of ACTA – details are in-
cluded in [22].

A flexible approach for compensating workflows, called
opportunistic compensation, has been developed in the context
of the CREW project at the University of Massachusetts [36].
In this approach, execution and compensation dependencies
between workflow steps are explicitly specified in the LAWS
workflow specification language. Although the explicit speci-
fication of dependencies provides more flexibility than our ap-
proach (in which compensation dependencies follow directly
from control flow in a process), it can also lead to very complex
situations with unclear semantics, e.g., in the case of parallel
compensation and (re)execution. The semantics of the LAWS
primitives are, however, only addressed informally in [36].

7.4 Formal specification of transaction semantics
and mechanisms

Formal specification of transaction semantics has been ad-
dressed by a number of researchers. In [38], a formal treatment
of compensating transactions is given. The focus is on the cor-
rectness of individual compensating transactions. The work
we present in this paper focuses on the construction of com-
plex compensating graphs (global transactions) consisting of
predefined compensating transactions. As such, it can be seen
as complementary to the work in [38]. Formal specification
of transaction mechanisms contributes to the assessment of
the correctness of these mechanisms and of the applications
using these mechanisms. This paper addresses the aspect of
compensation semantics in process-centered applications like
workflow management. As such, it can be used to formally as-
sess the correctness of transactional aspects of workflow sys-
tems using the transaction management approach developed
in the WIDE project [23].

A formal approach to complex transactions in composite
systems is presented in [3]. This work describes the seman-
tics of complex transaction environments in terms of three
basic system compositions (stacks, forks, and joins). Sagas
are placed in this framework by analyzing their concurrency
characteristics on a high abstraction level. The work is not
aimed at analyzing the operational semantics of sagas, how-
ever. As such, [3] can be considered a high-level framework,
into which the more detailed work in this paper can be placed.
Related work is presented in [50], in which formal correctness
criteria for concurrency control and recovery in transactional
process management are given for contexts with transactional
subsystems.

More general observations with respect to correctness is-
sues in workflow management are presented in [35] in an in-
formal fashion.

8 Conclusions

In this paper, we present the formal specification of a complete
high-level transaction mechanism. The mechanism provides



332 P. Grefen et al.: Global transaction support for workflow management systems

an approach to advanced transaction management in process-
centric environments that fulfils requirements of real-world
application contexts with relaxed transactional requirements.
The mechanism can easily be coupled to a low-level transac-
tion mechanism to obtain two-level recovery functionality. In
the WIDE project, this coupling has been demonstrated with
a low-level nested transaction model.

The distinction between specification and execution
graphs in our approach allows effective handling of cycli-
cal process structures. The abstraction of workflow processes
on the one hand and separation of workflow definition time
and enactment time formalisms on the other hand also pro-
vides an independence of specific workflow specification lan-
guages. The concept of partial compensation allows for flexi-
bly bounding the effects of compensation. Efficiency aspects
are taken into account in the mechanism through the inclu-
sion of compensation graph filtering. The formal specifica-
tion clearly and unambiguously describes the semantics of the
mechanism, which are not obvious in complex partial rollback
situations. The simple formalisms used make the approach
well digestible, however. We believe that the integration of a
formal specification and operational approach provides a step
towards the practical use of advanced transaction mechanisms.

This work shows that it is well feasible to provide for-
mal semantics of real-world advanced transaction manage-
ment systems, closely coupled to a system architecture. The
approach presented is not limited toWIDE global transactions,
but can be applied to other transaction models as well.

The formal semantics of the transaction mechanisms pre-
sented in this paper are useful for the developers of a trans-
action management subsystem: essentially, it provides a com-
plete and unambiguous functional specification of the system.
If ‘wrapped’ in the right tools, the formal semantics can be of
use for advanced users of the underlying transaction model –
both application designers and advanced end users. The for-
mal semantics can be the basis for static formal validation of
transactional behavior of complex workflow processes. The
compensation algorithms can be used in workflow analysis
tools to present the designer or end user with automated aids
in analyzing the effects of specific global transaction designs
(e.g., the scope of partial rollback in specific situations).

A prototype of the transaction mechanism specified in this
paper has been realized in the WIDE project, providing both
complete and partial rollback functionality as described in this
paper. It has been integrated with the FORO workflow manage-
ment system, resulting in a flexible, distributed architecture.
The prototype system has been employed in two demonstra-
tor environments, one in the insurance and one in the medical
domain [25].

The transaction model and mechanisms described in this
paper can be extended in a number of ways. Even more flexi-
bility in rollback behavior can be obtained by using dynamic
safepoints, i.e., steps that are dynamically assigned the safe-
point label based on expressions over the transaction state.
Global transactions that are distributed over multiple transac-
tion engines can be supported by a distributed global transac-
tion system, as outlined in this paper and described in more
detail in [51].

An application of the work presented in this paper to het-
erogeneous federated environments is one of the topics of the
CrossFlow project [27, 28, 29]. In this project, compensation

algorithms are applied in a three-level process model sup-
porting cross-organizational workflows [52]. Heterogeneous
federated environments are typically found in electronic com-
merce scenarios, where tightly coupled transactional interac-
tion is often not appropriate [13].

Acknowledgements.Thanks go to Stefano Ceri of the Politecnico di
Milano for his comments on an earlier version of this work. Wijnand
Derks of KPN Research is acknowledged for his feedback on parts
of this paper. All members of the WIDE team are acknowledged for
their role in the realization of the architecture described in this paper.

References

1. G. Alonso et al. (1996) Advanced Transaction Models in Work-
flow Contexts; Procs. Int. Conf. on Data Engineering; New Or-
leans, Louisiana, USA, pp.574–581

2. G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan (1997) Func-
tionality and Limitations of Current Workflow Management
Systems; IEEE Expert; Vol. 12, No. 5

3. G. Alonso, A. Fessler, G. Pardon, H-J. Schek (1999) Transac-
tions in Stack, Fork, and Join Composite Systems; Procs. 7th

Int. Conf. on Database Theory; Jerusalem, Israel, pp.150–168
4. P. Bernstein, E. Newcomer (1997) Principles of Transaction

Processing; Morgan Kaufmann
5. E. Boertjes, P. Grefen, J. Vonk, P. Apers (1998) An Architecture

for Nested Transaction Support on Standard Database Systems;
Procs. 9th Int. Conf. on Database and Expert System Applica-
tions; Vienna, Austria, pp.448–459

6. G. Booch, J. Rumbaugh, I. Jacobson (1999) The Unified Mod-
eling Language User Guide; Addison-Wesley

7. F. Casati et al. (1996)WIDE:Workflow Model andArchitecture;
CTIT Technical Report 96-19; University of Twente

8. S. Ceri, P. Grefen, G. S´anchez (1997) WIDE – A Distributed
Architecture for Workflow Management; Procs. 7th Int. Work-
shop on Research Issues in Data Engineering; Birmingham, UK,
pp.76–79

9. Q. Chen, U. Dayal (1997) Failure Handling for Transaction Hi-
erarches; Procs. 13th Int. Conf. on Data Engineering; Birming-
ham, UK, pp.245–254

10. P.K. Chrysanthis, K. Ramamritham (1994) Synthesis of Ex-
tended Transaction Models using ACTA; ACM Transactions on
Database Systems, 19–3, pp.450–491

11. A. Cichocki, A. Helal, M. Rusinckiewicz, D. Woelk (1998)
Workflow and Process Automation: Concepts and Technology;
Kluwer Academic Publishers

12. A. Dan, F. Parr (1997) The Coyote Approach for Network Cen-
tric Service Applications: Conversational Service Transactions,
a Monitor and an Application Style; Procs. High Performance
Transaction Processing Workshop; Asilomar, CA

13. A. Dan c.s. (2000) Business to Business Integration withTpaML
and a B2B Protocol Framework (BPF); IBM Research Report
RC 21863; IBM Research, USA

14. J. Davis,W. Du, M. Shan (1995) OpenPM: an Enterprise Process
Management System; IEEE Data Engineering Bulletin, Vol. 18,
No. 1, pp.27–32

15. U. Dayal, M. Hsu, R. Ladin (1990) Organizing Long-Running
Activities with Triggers and Transactions; Procs. 1990 ACM
SIGMOD Int. Conf. on Management of Data; Atlantic City,
USA, pp.204–214

16. U. Dayal, M. Hsu, R. Ladin (1991) A Transactional Model for
Long-Running Activities; Procs. 17th Int. Conf. on Very Large
Databases; Barcelona, Spain, pp.113–122



P. Grefen et al.: Global transaction support for workflow management systems 333

17. A.K. Elmagarmid (Ed.) (1992) Database Transaction Models
for Advanced Applications; Morgan Kaufmann; USA

18. FORO Web Site (2001)
http://dis.sema.es/projects/FORO/foro.html;Sema Group,Spain

19. H. Garcia-Molina, K. Salem (1987) Sagas; Procs. 1987 ACM
SIGMOD Int. Conf. on Management of Data; San Francisco,
California, USA, pp.249–259

20. H. Garcia-Molina et al. (1991) Modeling Long-Running Activ-
ities as Nested Sagas; IEEE Data Engineering Bulletin, Vol. 14,
No. 1, pp.14–18

21. H. Garcia-Molina et al. (1998) Coordinating Multitransaction
Activities with Nested Sagas; in [42]; Ch. 16, pp.466–481

22. D. Georgakopoulos, M. Hornick, F. Manola (1996) Customiz-
ing Transaction Models and Mechanisms in a Programmable
Environment Supporting Reliable Workflow Automation; IEEE
Trans. on Knowledge and Data Engineering, Vol. 8, No. 4,
pp.630–649

23. P. Grefen, J. Vonk, E. Boertjes, P. Apers (1997) Two-Layer
Transaction Management for Workflow Management Applica-
tions;Procs. 8th Int. Conf. on Database and Expert System Ap-
plications; Toulouse, France, pp.430–439

24. P. Grefen, R. Wieringa (1998) Subsystem Design Guidelines for
Extensible General-Purpose Software; Procs. 3rd Int. Software
Architecture Workshop; Orlando, USA, pp.49–52

25. P. Grefen, B. Pernici, G. S´anchez (Eds.) (1999) Database Sup-
port for Workflow Management: The WIDE Project; Kluwer
Academic Publishers

26. P. Grefen, J. Vonk, E. Boertjes, P. Apers (1999) Semantics and
Architecture of Global Transaction Support in Workflow Envi-
ronments; Procs. 4th IFCIS Int. Conf. On Cooperative Informa-
tion Systems; Edinburgh, Scotland, pp.348–359

27. P. Grefen, Y. Hoffner (1999) CrossFlow: Cross-Organizational
Workflow Support for Virtual Organizations; Proceedings In-
ternational Workshop on Research Issues in Data Engineering;
Sydney, Australia, pp.90–91

28. P. Grefen, K. Aberer,Y. Hoffner, H. Ludwig (2000) CrossFlow:
Cross-Organizational Workflow Management in Dynamic Vir-
tual Enterprises; Int. Journ. of Computer Systems Science &
Engineering, Vol. 15, No. 5, pp.277–290

29. P. Grefen, K. Aberer, H. Ludwig,Y. Hoffner (2001) CrossFlow:
Cross-Organizational Workflow Management for Service Out-
sourcing in Dynamic Virtual Enterprises; IEEE Data Engineer-
ing Bulletin, Vol. 24, No. 1, pp.52–57

30. C. Hagen, G. Alonso (1998) Flexible Exception Handling in
the OPERA Process Support Systems; Procs. 18th Int. Conf.
on Distributed Computing Systems; Amsterdam, Netherlands,
pp.526–533

31. M. Hsu (Ed.) (1993) Special Issue on Workflow and Extended
Transaction Systems; IEEE Data Engineering Bulletin, Vol. 16,
No. 2

32. M. Hsu, C. Kleissner (1998) ObjectFlow and Recovery inWork-
flow Systems; in [42]; Ch. 18, pp.505–527

33. MQSeries Workflow Web Site (2001)
http://www-4.ibm.com/software/ts/mqseries/workflow/; IBM,
USA

34. S. Jajodia, L . Kerschberg (1997)Advanced Transaction Models
and Architectures; Kluwer Adademic Publishers

35. M. Kamath, K. Ramamritham (1996) Correctness Issues in
Workflow Management; Distributed Systems Engineering Jour-
nal; Vol. 3, No. 4, pp.213–221

36. M. Kamath, K. Ramamritham (1998) Failure Handling and Co-
ordinated Execution of Concurrent Workflows; Procs. 14th Int.
Conf. on Data Engineering; Orlando, Florida, USA, pp.334–
341

37. B. Kiepuszewski, R. Muhlberger, M. Orlowska (1998) Flow-
Back: Providing Backward Recovery for Workflow Manage-
ment Systems; Procs. 1998 ACM SIGMOD Int. Conf. On Man-
agement of Data; Seattle, USA, pp.555–557

38. H. Korth, E. Levy,A. Silberschatz (1990)A FormalApproach to
Recovery by Compensating Transactions; Procs. 16th Int. Conf.
on Very Large Databases; Brisbane, Australia, pp.95–106

39. N. Krishnakumar, A. Sheth (1995) Managing Heterogeneous
Multi-system Tasks to Support Enterprise-wide Operations;
Distributed and Parallel Databases, Vol. 3, No. 2

40. V. Krishnamoorthy, M. Shan (2000) Virtual Transaction Model
to Support Workflow Applications; Procs. 2000 ACM Sympo-
sium on Applied Computing; Como, Italy, pp.876–881

41. P. Krychniak et al. (1996) Bounding the Effects of Compensa-
tion under Relaxed Multi-Level Serializability; Distributed and
Parallel Databases, Vol. 4, No. 4; Kluwer Academic, pp.355–
374

42. V. Kumar, M. Hsu (eds.) (1998) Recovery Mechanisms in
Database Systems; Prentice Hall

43. F. Leymann, D. Roller (1994) Business Process Management
with FlowMark; Procs. 39th IEEE Computer Society Int. Conf.;
San Francisco, USA, pp.230–234

44. F. Leymann (1995) Supporting Business Transactions via Par-
tial Backward Recovery in Workflow Management Systems;
Procs. Datenbanksysteme in B¨uro, Technik und Wissenschaft;
Dresden, Germany, pp.51–70

45. F. Leymann, D. Roller (2000) Production Workflow – Concepts
and Techniques; Prentice Hall PTR

46. Object Management Group (1995) The Common Object Re-
quest Broker: Architecture and Specification, Version 2.0; Ob-
ject Management Group

47. J. Ousterhout (1994) Tcl and the Tk Toolkit; Addison-Wesley
48. A. Reuter, F. Schwenkreis (1995) ConTracts - A Low-Level

Mechanism for Building General-Purpose Workflow Manage-
ment Systems; IEEE Data Engineering Bulletin, Vol. 18, No. 1,
pp.4–10

49. A. Reuter, K. Schneider, F. Schwenkreis (1997) Contracts Re-
visited; in [34]; Ch. 5, pp.127–151

50. H. Schuldt, G. Alonso, H-J. Schek (1999) Concurrency Con-
trol and Recovery in Transactional Process Management; Procs.
18thACM Symp. on Principles of Database Systems; Philapdel-
phia, USA, pp.316–326

51. J. Vonk, P. Grefen, E. Boertjes, P. Apers (1999) Distributed
Global Transaction Support for Workflow Management Appli-
cations; Procs. 10th Int. Conf. on Database and Expert System
Applications; Florence, Italy, pp.942–951

52. J. Vonk, W. Derks, P. Grefen, M. Koetsier (2000) Cross-
Organizational Transaction Support for Virtual Enterprises;
Procs. 5th Int. Conf. on Cooperative Information Systems; Eilat,
Israel, pp.323–334

53. G. Weikum (1991) Principles and Realization Strategies of
Multilevel Transaction Management; ACM Transactions on
Database Systems, Vol. 16, No. 1, pp.132–180

54. J. Widom, S. Ceri (Eds.) (1996) Active Database Systems: Trig-
gers and Rules for Advanced Database Processing; Morgan
Kaufmann


