The VLDB Journal 10: 316-333 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100056

Global transaction support for workflow management systems:
from formal specification to practical implementation

Paul Grefen, Jochem Vonk, Peter Apers

Computer Science Department, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
E-mail: {grefen,vonk,apets@cs.utwente.nl

Edited by P. Bernstein. Received: 16 November 1999 / Accepted 29 August 2001
Published online: 6 November 2001& Springer-Verlag 2001

Abstract. In this paper, we present an approach to globalhave complex semantics with an operational, informal speci-
transaction managementin workflow environments. The transfication. This clearly limits their applicability in complex ap-
action mechanism is based on the well-known notion of com-plication scenarios. Also, they are mostly used in prototype
pensation, but extended to deal with both arbitrary procesgmplementations in academic research contexts only.
structures to allow cycles in processes and safepoints to allow In this paper, we address this problem by bridging the
partial compensation of processes. We present a formal spedjap between formal specification and practical application
fication of the transaction model and transaction managemertdf high-level transaction management for workflow environ-
algorithms in set and graph theory, providing clear, unam-ments. The transaction model used in the presented approach
biguous transaction semantics. The specification is straightfeatures relaxed transactional properties and rollback through
forwardly mapped to a modular architecture, the implementacompensation. Relaxed transactional properties are required
tion of which is first applied in a testing environment, then in for long-living, co-operative processes like workflows to avoid
the prototype of a commercial workflow management systemcomplete undo of performed work and to facilitate sharing
The modular nature of the resulting system allows easy distriof intermediate results of processes. Compensation allows
bution using middleware technology. The path from abstractrollbacks in relaxed transactional processes. Our transaction
semantics specification to concrete, real-world implementamodel is based on the existing saga model [19], but is applica-
tion of a workflow transaction mechanism is thus covered in able to general process structures including cycles and adds the
complete and coherent fashion. As such, this paper providesotion of partial compensation through the use of safepoints.
complete framework for the application of well-founded trans- Support for cycles is an important feature, as many practi-
actional workflows. cal workflow applications contain cyclical process structures,

e.g., to obtain a business goal in an iterative way or to retry a
Keywords: Transaction Management — Long-running trans- specific business function. Partial compensation is important
action — Compensation — Workflow management in practice to have a flexible means to control the scope of a
process rollback.

In this paper, we present a formalization in set and graph
theory of both high-level transaction model concepts and
transaction management algorithms. This formalization pro-
1 Introduction vides clear semantics for the operational aspects of the trans-

action model. These semantics are not obvious from infor-
Advanced information technology support for process-.mal descriptions in complex scenarios, which are common
in process-centric environments like workflow management

centered environments like workflow management applica- =~~~ A . S
tions has widely been marked as an important field of researcfppl'cat'ons' Optimization aspects as described in this paper

and development. In this context, extended transaction mec urther complicate matters semantically and thus strengthen

anisms are considered a prerequisite to provide high-level s Irr]uihneed fror fohrm;:ll s?m.wtllclz_s. Thetf%r?atl |Pgr$]d|entﬁ l\ﬁﬁd
mantics for complex, long-running processes like workflows € approach are ot a wefl-accepted nature, thus alowing

(see e.g. [31, 2, 11, 45]). Most existing extended transactioﬁor practical use of the presented work. We show how the for-

models and systems implementing these models, howeve'rnal functlon'speuﬂcatlon can easily be mapped to a modular
system architecture.

The work presented in this paper is supported by the European Com- The model and mechanisms presented in this paper have
mission in the WIDE project (ESPRIT No. 20280). Partners in WIDE been applied in the global transaction support developed in
are Sema Group and Hospital General de Manresa in Spain, Politethe WIDE (Workflow on Intelligent Distributed database En-

nico di Milano in Italy, ING Bank and University of Twente in the vironment) ESPRIT project. In this project, advanced database

Netherlands. A short and earlier version of this paper has appeare@chnology is developed to support next-generation process-
in the proceedings of the CooplS’99 conference [26].

P. Grefen et al.: Global transaction support for workflow management systems 317

oriented applications like workflow management [8, 25]. One2 Context
of the major parts of the database technology developed in
WIDE is a two-level transaction management subsystem|n this section, we present the background of the transaction
which is informally described in [23, 25]. The upper level management approach elaborated in this paper. We first dis-
of the subsystem caters for global transactions as formallyxuss the overall two-layer transaction model as it has been
described in this paper. The lower level caters for individualadopted in the WIDE project. Then we focus on the upper
business transactions. The transaction management subsysvel of this model by informally describing global transac-
tem has been integrated with the commercial FORO workflowtion management. We introduce an example that is used in the
management system developed by Sema Group [18]. The raext sections to illustrate algorithms. A formal specification of
sulting WIDE transactional workflow management system hagylobal transaction management presenting precise semantics
been applied in real-world insurance and healthcare applicafollows in the next sections of this paper.
tions.
In short, the contribution of this paper is threefold. Firstly,
we extend the well-known basic saga model to deal with com-
plex process structures and partial compensation. In doing s@.1 Two-layer transaction model
we obtain an extended transaction model that is well usable in
practical workflow contexts. Secondly, we show that it is pos-In the WIDE transaction model [23], two orthogonal trans-
sible to provide a precise though simple formal specification ofactional layers are identified to deal with the different re-
the advanced transaction management mechanismimplemerjuirements of high-level (long-living) and low-level (rela-
ing this model, thus giving a complete operational semantics ofively short-living) business processes. In most applications,
transaction management in the context of this model. Thirdlyboth types of processes exist, as low-level processes are sub-
we demonstrate that an implementation of this mechanisnprocesses of high-level processes. The WIDE model has been
can be integrated into a modular, loosely coupled architecelesigned to cater for process-centric applications like work-
ture of a commercial workflow management system. The reflow management, where complex transactions of long dura-
sulting architecture allows flexible distribution of transaction tion and a high level of cooperativeness are required.
management. Altogether, we provide a complete framework The bottom layer of the WIDE transaction model provides
for the application of advanced, compensation-based transafscal transactionswith strict transactional (ACID) require-
tion management to practical workflow management, therebynents [5]. Local transactions operate on persistent data (both
bridging the gap existing between these two domains. workflow and application data), using traditional transaction
mechanisms to enforce the ACID properties, most notably
atomicity and isolation. Local transactions coincide with busi-
1.1 Structure of this paper ness transactions in the business process application, i.e., parts
of a process that have atomic behavior from an application-
The structure of this paper is as follows. In Sect. 2, we infor-oriented view. The set of business transactions in an applica-
mally discuss the WIDE transaction model as the context fottion forms a partition of the complete process. Details of local
the formal treatment of transaction processing in the sequel diransactions are not relevant in this paper.
this paper. The notion of global transaction as defined in the The top layer provideglobal transactionswith relaxed
WIDE model is central in this paper. Sect. 3 discusses the fortransactional properties. In the global transaction layer, local
mal specification of global transactions in terms of specifica-transactions are used as black box atomic processes (steps in
tion graphs. In Sect. 4, we show how execution graphs are dythe global transaction) that comply with the ACID properties —
namically constructed from specification graphs during trans-as guaranteed by the local transaction layer. The two-layer ap-
action execution. Execution graphs model the execution statproach thus provides a good basis for a separation of concerns
of a global transaction. Section 5 presents the formal specifiin complex transaction management. Relaxation of transac-
cation of algorithms for handling workflow process rollbacks. tional properties at the global transaction layer is reflected
These algorithms describe the dynamic generation of comperin relaxed notions of isolation and atomicity. This relaxation
sating global transactions from execution graphs. We end thisaters for the needs of cooperative workflow processes above
section with a short discussion of the practical applications otthe business transaction level.
the formalism. One of these applications is using the specifi- Isolationinthe global transaction model is relaxed by mak-
cation of the algorithms in the implementation of a transactioning intermediate results of steps visible to the context of the
support subsystem. The architecture that provides the overafjlobal transaction (i.e., local transactions commit their results
structure for this implementation is discussed in Sect. 6. Weo the shared database), such that they are accessible to other
present a general abstract architecture, a concrete architectugbal transactions. In line with this shared database approach,
in the context of the FORO workflow management system thereis no explicit data flow and consequently no data-oriented
and a distributed architecture. In doing so, we show how thesynchronization within or between workflow instances at the
formal specification can be directly mapped onto the architecglobal transaction level. Note, however, that the local transac-
ture, thus providing a complete path from formal semantics taion layer takes care of traditional concurrency control.
practical implementation of transaction management. We pro- To obtain relaxed atomicity, rollback operations in the
vide a discussion of related work in Sect. 7, subdivided intoglobal transaction layer should have application-specific se-
four related areas of research. The paper is ended with comnantics instead of the database-oriented semantics of the local
clusions and a short discussion of possible extensions to thigansaction model. For these reasons, we have chosen a global
presented work. transaction model that is based on the saga transaction model

318 P. Grefen et al.: Global transaction support for workflow management systems

[19], extended with a flexible mechanism for partial rollback. payment. The travel department prepares tickets and vouchers
As in the saga model, relaxed atomicity is obtained by usingand sends them to the customer. Invoicing and payment check-
a compensation mechanism to provide rollback functionaling may have to be iterated when a payment has not yet been
ity. Rollback of global transactions is performed by executingreceived. Sending the travel documents cannot take place be-
a compensating global transaction that consists of comperfore payment has been received. Local transaction ‘sales’ has
sating local transactions. A compensating local transaction i®een specified as a safepoint. This means that in case of a pro-
included for each local transaction that has been committedess rollback, the effects of ‘sales’ do not need to be undone
in the failing global transaction. Running, not-yet-committed and process re-execution can start from ‘sales’.
steps can simply be aborted, as they are atomic local trans- Instantiations (executions) of a specification graph are de-
actions. Operations in compensating steps are applicatiorscribed in arexecution graptof a global transaction. As we
dependent and have to be specified by the application designaran have or-splits and cycles in a global transaction specifi-
Steps in a workflow can be marked sefepointsA safe- cation, the specification graph and the execution graph of a
point is a step in a workflow from where forward recovery global transaction are different in general: paths that are not
can safely be started after a global rollback has been comexecuted in an or-split are not in the execution graph and cy-
pleted (comparable to compensation points in the OpenPMles are replaced by the instantiation of the iteration. Execution
approach [14]) and hence a point where compensation cagraphs are thus rooted directed acyclical graphs (RDAGS).
end. As such, safepoints provide ways to flexibly specify par- The right hand side of Fig. 1 shows a completed execution
tial rollback strategies dealing with abort situations occurringgraph of the example specification graph. In this execution,
in different parts of a global transaction. Unlike safepoints inthe ‘cancel’ local transaction has not been executed and the
the saga model [19], global transaction safepoints do not re‘invoice-payment’iteration has been executed twice. Note that
quire making checkpoints. Like the functionality of compen- a single specification graph can lead to many different execu-
sating steps, placement of safepoints in a global transaction igon graphs. To reason about the dynamic properties of a global
fully application-dependent. transaction in execution, the execution graph is considered, not
The WIDE workflow model also includes exception prim- the specification graph.
itives to model non-standard behavior of applications [7, 25]. In the next section, we present a formalization of global
An exceptionis specified as an Event-Condition-Action (ECA) transactions and their execution. This formalization serves as
rule, stating when and under which conditions a separatelyhe basis for the compensation algorithms presented in the next
specified subflow is triggered by a workflow process. A de-sections.
coupled execution model [54] is used for exceptions in the
WIDE approach, i.e., the clauses of an ECA rule are evaluated
in separate transactions. Consequently, exception handling is
completely orthogonal to transaction handling. For this rea-3 Transaction specification
son, we will not discuss exceptions explicitly in this paper.
This section formalizes the specification of global transac-
tions as outlined in the previous section. Global transactions
are directed graphs built from workflow process elements and
sequence relations between them. These two ingredients of
global transactions are discussed in the subsections below.

. e . After that, we show how they are used together in the specifi-
A WIDE global transaction specification consists of a rootedCation of global transactions.

directed graph of global transaction steps (local transactions).
Thespecification graplis rooted as it can have only one start-
ing step. It can have an arbitrary number of ending steps. It can
contain various types of and/or-splits, and/or-joins, and cycle% 1 Workflow process elements
to cater for complex process structures as found in workflow™
applications (conforming to the WIDE conceptual workflow
model [7, 25]). The graph represents the possible executio
orders of the steps in the application process.

An example specification grapfrom a travel agency ap-

=R : 3 : : process structures from these workflow steps.
plication is shown in the left-hand side of Fig. 1. The graph Workflow tasks are specifications of atomic local transac-
models a high-level view of a process for selling and invoic-

. . . N , . tions in our model, as outlined in the previous section. A local
ing trips. .St?‘” of the process IS local transaction salgs, Ntransaction specification,... is taken from the domaif,,..
W.h'Ch atrip is selected and conﬂgureq. From there, a trip €arhnd has as attributes a ngme from the dortajra task sppeci-
either be cancelled or bOOkEd (or-split). After boqkmg,_two fication from the domai® (the domain of task programs), the
subprocesses proceed in parallel (and-split). The financial .d%entifier of its compensating counterpart from the dont@in
partment calculates, files, invoices, and checks for INCOMING, 4 an indication whether the local transaction is a safepoint:

! For reasons of clarity, we use a simplified version of the WIDE Topee = (
workflow process notation [7, 25], in which a diamond with a ‘1- P . -
symbol indicates an or-split or or-join, and a diamond with an ‘n- In practice, workflow specification models and languages offer

symbol indicates an and-split or and-join. An ‘s’-symbol in a processdifferent types of tasks to specify automatic tasks performed
step denotes a safepoint. by a system, manual tasks performed by a human actor, or

2.2 Global transaction model

Workflow processes contain two types of elements: workflow
thsks that represent activities to be performed and workflow
connectors that provide the primitives to construct complex

name : ID,task : P,comp : 1D, safep : bool)

P. Grefen et al.: Global transaction support for workflow management systems 319

sale?

cancel
book
calc file sale
¢ calc file
prepar S boo
<« invoice L L
prepar invoice invoice-2
sen payment
1 sen payment-2 Fig. 1. Example specification and execution

graphs

wait tasks to model explicit delays (wait states) in processhas a condition identification from the domain.; that spec-
execution. The various types of tasks included in the WIDEifies when the sequence element is active. The condition is
workflow model are described in detail in [7, 25]. In this paper, used to select between outgoing paths from an or-join — in
we abstract from the specifics of tasks, as we view them asther cases the condition yiel#RUE by default. The condi-
atomic units of work. tion is evaluated by the workflow management system during
Workflow connector elements represent the various typesvorkflow enactment, usually on the basis of case data associ-
of splits and joins found in workflow process definitions. A ated with a global transactioninstance. The details of condition
split connectors,.. is taken from the domai€S; .., a join evaluation are not relevant in the context of this paper.
CONNECOC] pe. from the domairClgpec. CSpec aNdCIspec
are both subtypes of the domain of general connectgys.:

Cspec = CSspec U CJspec

Apart from its identification, the only relevant attribute of a
connector is the indication whether it is total (i.e., it is an
and-split or and-join as opposed to an or-split or or-join):

Gspec = <Vvspec; Espec>

Cspec = (name : 1D, total : bool) The example global transaction specification in the left-hand
The selection expressions associated with an or-join are inside of Fig. 1 consists of a set of 15 process elements and 16
cluded in the specification of sequence elements, as discussedquence elements.
below. The WIDE workflow model offers a number of vari- As explained above, a global transaction specification is
ations on the basic connector types, like iterative splits anchn abstraction of a complete workflow specification, obtained
joins, and partial (k-out-of-n) joins [7, 25]. These can, how- by removing all elements from the workflow specification that
ever, all be handled in a similar way as the basic types —hencare not relevant to transaction processing as described in this
they are not explicitly discussed in this paper. paper. Although the global transaction specification model
Now we can define the set of workflow process node (ver-s relatively simple, it is based on an advanced, full-fledged
tex) specificationd’;,.. as the supertype of the local transac- workflow model [7, 25]. A comparable approach to workflow

3.3 Global transaction specification graph

Now we can define a global transaction specification graph
as a tuple consisting of a set of workflow process elements and
a set of workflow sequence elements:

tion specifications and the connector specifications: abstraction is used in [44], where only nodes and edges of a
Vipee = Tapee U Cipee process model are the basis for the specification of the trans-
action model.
We introduce a number of basic operations on specification
3.2 Sequence elements graphs that we require in more complex functions. Starting

points of a specification graph are nodes without incoming
Where the workflow process elements defined above represeRfiges. Ending points are nodes without outgoing edges:

the nodes in a workflow specification graph, the workflow g14,.+(G) = {v € G.V |~ (Fw € G.V) ((w,v) € G.E)}
sequence elements representthe edgesin a specification graph. ’

A sequence element (edge) specificatigp.. is taken from end(G) ={v € GV |- (Fw € G.V) ({v,w) € G.E)}

the sett;;,.. defined as follows: Functionspredvandsuccvcalculate the set of direct prede-
Eqpec = {orig, dest : ID, cond : Xse) (ée.ssors, respectively direct successors of a veriexa graph

Each sequence element has a workflow process element from
the domairV/, ... as origin and destination, identified by their Predv(G,v) = {w € G.V |(w,v) € G.E}
identifiers from the domaifD. Further, a sequence element succv(G,v) = {w € G.V |(v,w) € G.E'}

320 P. Grefen et al.: Global transaction support for workflow management systems

We require that a correct specification graph have exactly on®redicatessafe dummy and idempotentdenote semantic
starting point and at least one ending point. These constraintsroperties of a local transaction — we need these predicates in
are expressed as follows (whetard is the set cardinality the construction of compensating global transaction specifica-
function): tion graphs. Predicatmafetests whether a local transaction is
a safepoint. Predicattimmytests whether a local transaction
card(start(G)) = 1 has dummy semantics (i.e., does not have any effect). Predi-
card(end(G)) > 1 cateidempotentests whether a sequence of executions of a
local transaction has the same semantic effect as one single
We assume that all connectors are modeled explicitly in specexecution. So we have:
ification graphs, i.e., all local transactions have at most one
incoming and one outgoing edge. This model can, however,
be easily adapted to cater for other models, e.g., specification safe : Tioc — bool
in UML activity diagrams [6] in which or-joins are implicit. dummy : Tjoc — bool

idempotent : Tj,. — bool

4 Transaction execution The implementation of these predicates relies on the local
transaction specification an instantiation is based on:

This section formalizes the execution of global transactions,

based on the specification defined in the previous section. Put safe(t) = spec(t).safep

shortly, global transaction execution takes a global transac- dummy(t) = empty(spec(t).task)

tion specification graph as input and incrementally generatesdempotent(t) = idempotent(spec(t).task)

a global transaction execution graph that is a representation of . i
the execution history of the global transaction. The idempotent predicate defined on tasks can be evaluated

Important elements of this section are the definition Ofautomatlcall'yln simple cases, but will have to be indicated by
global transaction execution graphs, basic predicates and funé2€ task designer for the general case. _
tions defined on these graphs, and construction functions that WO binary predicates are defined on the domain of local
modify execution graphs during transaction execution. Thdransactions. Predicateig denotes that the first transaction
treatment in this section is the basis for the rollback (compenhas dynamically triggered the second transaction during the
sation) algorithms in the next section. We start with formal- €x€cution of a global transaction. Predicatialdenotes that

izing local transactions, which are the ‘building blocks’ for tWo local transactions have equal semantics, i.e., are instanti-
global transactions. ations of the same local transaction specification (but are not

necessarily in the same execution state):

. trig : Tioe X Tioe — bool
4.1 Local transactions
equal : Tioe X Tjoe — bool

In the WIDE transaction model, local transactions are atomicrye state-related predicates are notindependent. A transaction

units of execution [23, 5]. As such, instantiations of local trans-ih ot js committed is started as well. Two local transactions can

actions form the elementary steps in instantiations of global1y have a triggered relationship if the first transaction is

transactions. For reasons of brevity, we use the term ‘localommitted and the second transaction is started:

transaction’to denote ‘instantiation of a local transaction’. Lo-

cal transactions are defined in the don&ig,, the domain of (Vv € Tjoc)(committed(v) = started(v))

local transaction identifiers. These identifiers are constructed (vy, w e Tj,.)(trig(v, w) = committed(v) A started(w))

by suffixing the name attribute from local transaction specifi- _ _

cations in the global transaction specification graph with localFunctioncompreturns the compensating counterpart of the

transaction instantiation numbers. Instantiation numbers arécal transaction given as its argument or adummy transaction

necessary to distinguish between multiple instantiations of théf the compensating counterpart does not exist:

same local transaction specification (as generated by cycles in

[T ; ; . comp : Tioe — Tspec

a specification graph). For clarity, we omit these numbers in _

this paper. comp(t) = spec(t).comp i spec(t).comp # null
We first define a function that yields the local transaction dummy if spec(t).comp = null

specification that a local transaction is an instantiation of: .
As remarked above, compensating counterparts of local trans-

spec : Tioe = Topec actions have to be specified by an application designer. Be-
A number of unary predicates is defined on the domain 01J_ow, we use local transactions as components (atomic steps)

local transactions. Predicatstrtedandcommittedindicate " global transactions.
the execution state of a local transaction. They denote whether
the execution of alocal transaction has begun, respectively, hag > execution graph definition and basic operations
completed:
An execution graph of a global transaction models its execu-
started : Tjoe — bool tion history. It is a directed graph consisting of a set of ver-
committed : Tj,. — bool tices corresponding to all started local transactions and a set

P. Grefen et al.: Global transaction support for workflow management systems 321

of edges corresponding to the triggering relationship betweehese four operations are described formally below, using the
these local transactions: concepts introduced in the previous section.

GQ -V E Starting a global transaction. Starting a new global trans-
esee = (Veres: Fevec) action corresponds to creating an empty execution graph:
V:E:L’ec - {U € T‘loc \Started(v)} .
Eezee = {{v,0) € Vegee X Vegee [trig(v, w) } startgt = (0, 0)

. .)) After a global transaction has been created, local transactions
We mtroducganumberof basic operations on execution grgpr‘@an be started in its context.
that we require in the sequel of this paper. Like for specifica- _ _ o
tion graphs, starting points of an execution graph are node§tarting a local transaction. A new local transaction is
without incoming edges and ending points are nodes withoustarted when a new task in the specification graph is instan-

outgoing edges: tiated. Note that the execution of connector elements does

not change the execution graph itself, but can influence the

start(G) = {v € GV |- (3w € G.V) ((w,v) € G.E)} execution path through the specification graph (based on the
end(G) = {v € G.V |- (Bw € G.V) ({v,w) € G.E)} conditions in sequence elements).

Starting a new local transaction corresponds to adding a

Functiorpredscalculates the direct predecessors of a subgrapiew vertexw to the graph and connecting it to its set of di-
SinagraphG, i.e., the set of vertices that have outgoing edgeg'ect predecessors. The direct predecessors correspond to the
ending in starting points of the subgraph: completed local transactions that triggered the new local trans-

tion:
preds(G,S) = {v e G.V |{v,w) € G.EANw € start(S) } action

The active transactions in an execution graph are the locaftartit(G, w) = (addv(G.V,w), adde(G.E, w))
transactions that have not yet been committed. The active addv(V,w) =V U {w}

edges are the edges ending in nodes corresponding to activeadde(E’ w) = E U {{v,w) |trig(v, w) }
transactions:

activev(G) = {v € end(G) |~committed(v) } Ending alocal transaction: Ending a_local transaction means
activee(G) = {(v,w) € G.E |~committed(w)} replacing the_ corresponding vertexn the graph by a new

’ vertexw that is equal except for its stdte
Asdiscussedin Sect. 2.1, cyclesin process specification graphs
are rolled out in execution graphs, so execution graphs are
acyclic. This constraint on the structure of execution graphs A Vo) =
can be expressed as shown below: changev(V, v) =

endlt(G,v) = (changev(G.V,v), changee(G.E,v))

W E Tioe (W EV Aw # v) V }
(equal(w,v) A committed(w))
changee(E,v) = {{z,y) e Ely #v}
(x,v) € EN }

equal(w,v) A committed(w)

(Vv € G.V) (mpath(G,v,v))
path(G,v,w) & ((v,w) € G.E)V U {(z, w) € Tioe X Tioe
(Fz € V) ((v,z) € G.E A path(G, z,w))

. o Figure 2 shows two partial execution graphs, resulting from
Having completed the preliminaries, we can now turn to con-

. : : X the execution of the specification graph in Fig. 1. In the left-
structing execution graphs during global transaction execlpand side graph, three steps have been completed (indicated

tion. by shading). Steps ‘file’ and ‘invoice’ are currently being ex-
ecuted. This graph has been constructed bystaegt five
startlt, and threeendlt operations as specified above. In the
right- hand side graph, these two steps have been completed

During th " ¢ lobal t i i i and steps ‘prepare’ and ‘payment’ are being executed (two
uring the execution of a giobal transaction, IS execulion,,, e startit and two moreendit operations have been exe-
graph has to be maintained to properly reflect the status o uted)

the execution. The details of the maintenance follow from the

specification of the global transaction. Basically, there are foutEnding a global transaction. A global transaction is ended
types of operations on execution graphs corresponding witkafter the last task conforming to the global transaction specifi-
events in the lifecycle of a global transaction: cation graph has been ended. Ending a global transaction does
not change the execution graph:

4.3 Execution graph construction

1. Creation of a new empty execution gra@h,.. when a
new global transaction instance is started on the basis of andgt(G) = G

specification graph. . . I . :
2. Addition of a hew vertex (and corresponding edges) toThe operations discussed in this section are used in normal

C . _“global transaction processing, i.e. without the occurrence of
Gleace When a new local transaction s started as SpeCIerdé}lobad aborts. Now we turn our attention to handling global

N Gopec. . .abort situations.
3. Replacement of a vertex (and corresponding edges) i
Gezec When a running local transaction is completed. 2 Note that it is not possible to simply update the state of a vertex,

4. End of a global transaction. given our declarative approach to algorithm specification.

322 P. Grefen et al.: Global transaction support for workflow management systems

sale start o
(O—>() c-invoice
. sale
calc file
sale boo calc file c-payment
_ boo
calc file
boo repar invoice v L
prep invoice c-invoice
prepar invoice-2
invoice payment
payment payment-2 ¢ fije c-calc c-book

Fig. 2. Partial execution graphs
Fig. 3. Partial execution and compensation graphs
5 Global transaction compensation

apartial), the identifien, of the global transaction to be aborted,

In this section, we present the algorithms used for compens . e .
ing global transaction when a global abort situation arises. Pu"fmd the identifieo of_the global transaction step that caused t_he
rollback. The function returns the name of the compensating

shortly, compensation is performed by dynamically generat-

ing and executing a compensating specification graph base%ilc’bal transaction specification and the list of restart points in
on the analysis of the execution graph of a globall trans:alctiont. e orl_gma_l global transaction execution graph. Restart points
We start this section with an informal introduction to &'€ Pointsinanexecution graph from where forward execution

global transaction compensation. Then, we formally discus$2" 12ke place after compensation. Funcabort performs
the generation of complete and partial compensation graphd€ following steps:
as required to perform complete, respectively, partial rollback 1. Itretrieves the execution graph of the aborted global trans-
(abort) of global transactions. action from persistent storage.

In the formal treatment, we first present the compensation2. It computes the compensating specification graph plus the
driver, i.e., the high-level function used to invoke a globalcom- restart points in the original graph.
pensation. Next, we present the algorithms for the construc-3. It generates a name for the compensation graph and stores
tion of complete and partial compensation graphs. Finally, we the specification of the graph into persistent storage.
show how compensation graphs can be made more efficiertq e have:
by filtering out unnecessary steps.
abort(m,n,v)
5 1 Informal introduction = storespec(gcomp(m, getexec(n), v), newid(n))

Functiongetexecetrieves the execution graph from persistent

An example of a global transaction execution requiring globalstorage based on the global transaction identifiend returns
rollback is shown in the left part of Fig.3. Here, we see anit as its result. Functiostorespetakes a compensation graph
execution graph corresponding to the specification graph imys identifier generated mewidas input and stores the graph

Fig.1, at a point where the global transaction has partly bees specification graph in persistent storage; it produces no
completed. The grayed steps have been committed; two Stepggy|t.

are being executed. Localtransaction ‘sales’has been specified Function gcompis used to calculate the compensation

to be a safepoint. Now assume that running local transactiogpecification graph for a given abort mode, execution graph,
‘payment’ raises an error that requires global rollback. Thengnd failure point. It distinguishes between complete compen-
all running local transactions (‘prepare’ and ‘payment-2’) aresation and partial compensation. In case of a partial compen-
aborted (using the local transaction mechanism). Next, the exsation, the restart points in the execution graph have to be

ecution graph needs to be compensated from the point wherga|culated. Hence, the result typegrfompis a pair of com-
the error occurred until a safepoint is encountered (to the stafgensation graph and set of local transactions.

of the graph if none is found). This means that compensation { (ccomp(G),0) if m = complete

is performed by executing the dynamically constructed globalycomp(m, G, v) = peomp(G) if m — partial

transaction depicted in the right-hand side of Fig.3. In this
figure, the prefix ‘c’ for a local transaction indicates its com- Functionsccompandpcompare discussed in detail below.
pensating counterpart. The details of the construction of this

example compensating transaction are discussed in the sequel)

of this section. Note that a very simple example is chosen foP-3 Complete compensation

reasons of clarity. In general, compensating global transac-

tions can have a complex structure consisting of many local 108 ¥ RR 2 S B0 L TEREETE FACIeS £ IRe
transactions (a more complex example follows in this paper)Z " 99) P L :
This compensating global transaction is based on the execu-

tion graph of the global transaction that has to be rolled back.
5.2 Compensation driver In this section, we discuss calculating complete compensation

graphs, i.e., compensation graphs that ‘cover’'the complete ex-
A compensation request is invoked by functadrort, whichis ~ ecution graph. A complete compensation graph is constructed
parameterized with the requested abort med@Eomplete or from an execution graph in the following five steps:

P. Grefen et al.: Global transaction support for workflow management systems 323

sale c-sale)) start)]
(O c-invoice (O——() c-invoice
calc file c-calc c-file

book c-book

C-payment C-payment

invoice @ invoice2 c-invoice (O c-invoice
c-invoice c-invoice
paymen c-paymen

Fig. 4. Steps 1 and 2 in complete compensation graph construction O—>C—>O—>O

c-file c-calc c-book c-sales c-file c-calc c-book c-sales

1. The active local transactions are removed from the graphfi9- 5- Steps 3 and 4 in complete compensation graph construction
they have been rolled back by the local transaction mecha-

nism and are of no concern to the global transaction meChQraph contains the required compensating actions, but not the

anisms.)
2. The vertices in the graph are replaced by their compensa{-equ”ed flow control.

ing counterparts to obtain the functional elements for thelnverting edges. Edges in a graph are inverted by simply

compensating global transaction. Note that this step effecexchanging their start and end points:

tively transforms an execution graph into an ‘intermediate .

form’ specification graph. This form is independent from 0Pe(G) = (G.V,invert(G.E))

the concrete process specification model (the latter is deaftrvert(E) = {(v, w) [(w,v) € E}

with in step 5 below). : : . - .
3. The edges in the graph are reversed to obtain the corre(-:gtgeiStzzc?noiﬁg?é%l?ﬁa%%ggiégvirfsgn tg Ezgtgr?r?:t I?h?g.ri 'Sr’]

flow control for the compensating global transaction (theh P b hicall dered t g.bt in th | tg Ip t

inverse of the flow control of the ‘original’ global transac- o> Pc€n graphically reordered 1o obtain the usual top-ie

tion). to bottom-right process flow). This graph contains both the
4. Ifthe graph resulting from the previous steps contains muI-reql,:'r?dbfuﬂc“i”a“ty (ie., tr;e ?_Ompehsiatlng tasks) and flow
tiple starting points, a unique starting point is added to theCONITol bUtiacks a unique starting point.

graph and connected to the ‘original’ starting points. Ensuring a single starting point. A single starting point for
5. Explicit connectors are added to the specification graph tédhe compensation graph is ensured by adding a new vertex

make it compliant with the concrete process specificationf the ‘original’ graph has multiple starting points. Edges are

model defined in Sect. 3. added between the new vertex and the ‘original’starting points.
The new starting point has dummy semantics, represented by
the empty stepy.

addstart(Q)

= (G.V Uaddstartv(G), G.E U addstarte(Q))

0 if card(start(G)) =1
{tg} if card(start(G)) >1

This five-step process is reflected in the formula below.
Each of the steps is described in detail in the sequel.

ccomp(G)
= insconn(addstart(compe(compv(strip(Q)))))
addstartv(G) = {
Stripping an execution graph. An execution graph is
‘stripped’ of its active transactions by removing the vertices addstarte(G)
corresponding to active local transactions plus edges ending 0 if card(start(G)) =1
in these vertices: - {{<tw77}> |v € start(G)} if card(start(G)) > 1

strip(G) = (G.V\activev(G), G.E\activee(G)) The graph in the left-hand side of Fig.5 contains two starting
The stripped version of the execution graph from Fig. 3 isPoints (‘c-file’ and ‘c-invoice’). Therefore, a single starting
shown in the left-hand side of Fig. 4. point is added as shown in the right hand side of the figure.

))) The graph represents the complete compensating global trans-

changing execution graph vertices by their compensating spec-) L) .
ification counterparts and reorganizing the edges in the grapHSerting explicit connectors. The intermediate form spec-

to point to the new vertices. Functisempvimplements this ~ Ification graph obtained through the previous steps does not
functionality: contain any explicit connectors yet. And-split and and-join

connectors are implicit in nodes that have multiple outgoing,

compv(G) = (exchangev(G.V'), exchangee(G.E)) respectively, multiple incoming edges (note that a compensat-
exchangev(V) = {v € Tioe |v = comp(w) Aw € V'} ing process does neither contain or-splits nor or-joins):
exchangee(E) = {(v,w) € Tioe X Tioc|(®,y) € E A multiout(G) = {v € G.V |card(succv(v)) > 1}
v = comp(x) ANw = comp(y)} multiin(G) = {v € G.V |card(predv(v)) > 1}

The result of applying this second step to the stripped exampl&unctioninsconncomputes a new specification graph in which
execution graph is shown in the right-hand side of Fig. 4. Thisthe set of nodes is extended with the set of required explicit

324 P. Grefen et al.: Global transaction support for workflow management systems

connectors and the set of edges is computed by leaving out th an

edges involved in implicit connectors and adding the edges i

required for the explicit connectors: o
&——>() c-invoice

insconn(G) = (G.V Unewconn(G), (G.E\deledges(G))

U newedges(G)) c-payment
The set of required explicit connectors is easily established o
as follows (note that we give the explicit connectors the same c-invoice

ID as the nodes involved in the implicit splits and joins to
‘connect’ them easily):

newconn(G) = newsplit(G) U newjoin(G) c-file c-calc c-book c-sales
newsplit(G) = {(n, TRUB € CSgpec|
(Fv € multiout(G))(v.name = n)}
newjoin(G) = {(n, TRUE € CJpec| and backward dependencies between tasks in the graph. This
v section presents the algorithms required to calculate the ap-
propriate subgraph of the execution graph.

The superfluous edges in the new graph are also easily deteCalculating a partial compensation graph. A partial com-

Fig. 6. Step 5 in complete compensation graph construction

(Fv € multiin(Q))(v.name = n)}

mined: pensation graph is constructed by first calculating the proper
subgraph of the execution graph to be compensated and next
deledges(G) = {(v,w) € G.Elv € multiout(G) V w using the complete compensation algorithm of Sect.5.3. The
€ multiin(G)} direct predecessors of the subgraph to be compensated become

restart points. Functiopcompis thus specified as follows:
The new edges are determined per explicit connector in the

following way: pcomp(G,v)
= (ccomp(sgraph(G,v)), preds(G, sgraph(G,v)))
newedges(G) = U newedgeslocs(G,v) U sgraph(G,v) = extend({{v} ,0), Q)

veEmultiout(G)
Functionextends used to calculate the subgraph starting from

U newedgeslocj(G, v) the local transaction that caused the abort; it is specified below.

vemultiin(G
@ Calculating a subgraph to be compensatedThe subgraph
newedgeslocs(G, v) to be compensated is calculated from the vertex where the
= {{v,w) |lw € newsplit(G) A v.name = w.name } U partial abort originated. From this vertex, we first construct a
subgraph consisting of predecessors of the vertex until safe-
points are encountered (extending the subgraph backward).
Aw € succo(v)} Next, we extend this subgraph forward by including all ver-
newedgeslocj(G,v) tices reachable from the subgraph.

= {(v,w) |v € newjoin(G) A v.name = w.name } U extend(S, G) = ext forw(extback(S, G), G)
{{z,w)|w € newjoin(G) A v.name = w.name A

{{z,w)|z € newsplit(G) A v.name = z.name

Extending a subgraph backward is performed by function
x € predv(v)} extbackin a recursive fashion until the subgraph has reached

o))) a stable size, i.e., does not grow anymore. Funatixtivack
The application of the above function of the intermediate com-ses functiorbackstepio extend a graph one step:

pensation graph depicted in the right hand side of Fig. 5 results
in the completed compensation graph depicted in Fig. 6. extback(S, G)

IS it S = backstep(S, Q)
| extback(backstep(S, G), G) otherwise

backstep(S, G)

Partial compensation of a global transaction requires compen- — (backstepv(S, G), backstepe(S, G))
sation of a part of the execution graph, starting from a roubaCkbackstepq)(S Q)
point and delimited by the proper safepoints in the graph. A ’
simple example has already been presented in Fig.3, where = 1V € G-V[v € SV V ((v,w) € G.E A
task ‘sales’ of the execution graph is not compensated in the w € S.V A —safe(v))}
compensation graph because it is a safepoint. backstepe(S, G) = {(v,w) € G.E |w € 5.V A —safe(v) }

As execution graphs can be arbitrarily complex, the situ-
ation is usually not as simple as depicted in Fig. 3. The probExtending a subgraph forward is performed in a similar man-
lem is finding the proper subgraph of the execution graph taner: functionextforwextends a subgraph in arecursive fashion
be compensated, taking into account safepoints and forwardntil the subgraph has reached a stable size:

5.4 Partial compensation

P. Grefen et al.: Global transaction support for workflow management systems 325

N1 M2
O—0O

H Gt Fe
\O >0

S :
O—)O\ Lt K-t Jt |-

Fig. 8. Compensation graph corresponding with Fig. 7

5.5 Compensation graph filtering

Compensation graphs constructed as discussed above can be
made more efficient by filtering out steps that are semantically

K L o > unnecessary. Two typical classes of unnecessary steps are steps
.' §J - ;/ with dummy semantics and steps with idempotent effects in
sequences. More advanced types of filtering are possible too,

e.g., replacing sequences of compensating steps by composite
compensation steps (steps that undo the effects of multiple

C D E
o i *\M N ‘original’ steps in a more efficient manner), or filtering of not
A B E G H e e strictly necessary steps based on actual system load.
o A A second-order functiofilter is used to construct a func-
|

)@\P Q tional composition of various functions that each perform one

J K L - e of the filtering algorithms, e.g., the ones mentioned above.
@_>@_>Q_>@/ This function takes a specification graph and a list of filter
functions as its arguments:

Fig. 7. Execution graph, backward extension, and forward extension
filter(G, < filtery, ..., filter, >)

= (filtery o --- o filter,)(G)

extforw(S, G) Functionfilter thus provides the function of a filter driver, al-
) if S = forwstep(S,G) lowing easy addition of new filtering functionality or selection
extforw(forwstep(S, G), @) otherwise of filters for specific application classes.

_ Functionfilter can easily be applied in the compensation
forwstep(S, &) = (forwstepv(S, G), forwstepe(S, G)) driver discussed in Section 5.2, resulting in the following spec-
forwstepu(S, G) ification of functionabort (where f is the list of filter func-

={veG@VjweSVV({(wv)e GGEANweSV)} tions):

forwstepe(S,G) = {{v,w) € G.E|v e SV}

abort(m,n,v)

. _ = storespec(addstart(filter(gcomp(m,
Figure 7 shows an example of subgraph calculation. In the top
of the figure, an execution graph is depicted. Steps B and J are

safepoints (indicated by thesymbols) and steps O and R are \ote that we have to reapply functiaddstart(as defined in
currently being executed, i.e. started but not yet committedgection 5.3) above, as the filtering might remove the starting
Nowlsuppose step R invokes a rollba(;k operation. Then f'rStpoint of a compensation graph. It is now used twice to keep
running steps O and R are aborted using the atomicity contro} clear separation of concerns between compensation graph
functionality of the underlying local transaction meCha”'Sm-generation and compensation graph filtering.

Next, compensation processing is initiated by determining the” ggajow we show how filtering dummy steps and idempo-
subgraph to be compensated. Backward extension as describgdy: steps can be specified as two filter functions using the

above takes place from step Q (being the direct predecessgymalism introduced in this paper. Before, we first introduce
of step R that caused the rollback), as depicted in the midz general filtering function.

dle graph of the figure by the half-grayed steps. Informally,

backward extension means searching for all predecessors offdltering steps. Functionfilterf specified below is used to re-
given step until safepoints are encountered. Finally, forwardnove steps from a compensation graph that satisfy a predicate
extension takes place as shown in the bottom graph. Inforf, Wheref describes a characteristic of a step in the context of
mally, forward extension means finding all successors of dts compensation graph. Removing these steps implies remov-
given subgraph. Note that the subgraph to be compensatdtlg the corresponding vertices from the graph, removing all
includes safepoint J, as this point is covered by forward extene€dges connected to these vertices, and inserting new edges to
sion. Figure 8 shows the final compensation graph, obtainegonnect the vertices that were disconnected by the removals:
by applying the algorithms of Sect. 5.3 to the calculated sub-)))

graph. In this figure, a step® denotes the compensating filterf(G, f) = (filter fu(G, f), filter fe(G, f)
counterpart of step X. U newfe(G, f))

getexec(n),v), f)), newid(n))

326 P. Grefen et al.: Global transaction support for workflow management systems

N’ v/l
® O GT (3] Process

O/ \5 G F Engine Engine
o

>
N - / [4) (1)
L K |’ I [@ !“—‘
O—0O—> GT Process
nce U

Fig. 9. Reduced compensation graph of Fig. 8 Instance |} Insta
filter fu(G, f) = {ve GV |-f(G,v)}
filterfe(G, f) = {(v,w) € G.E|-f(G,v)A—f(G,w) } Persistent Storage
newfe(G, f) = {{(v,w) € GV x G.V]
feonn(G, f,v,w)} Fig. 10.Abstract GTS architecture

feonn(G, f,v,w) = 3z € succv(v))(f(G,z) A

((z,w) € G.EV feonn(G, f,z,w))) idemf identifies idempotent steps that have only direct pre-

decessors with equal semantics (assuming the basic predicate

Removing dummy steps.Local transactions may not have a idempotentefined on local transactions).

compensating counterpart because an inverse transaction has

not been specified by the application designer or simply doed'ilteri(G,v) = filter f(G,idemf)

not exist. An inverse transaction may not have been specified;jem, f(G,v) = idempotent(v) A (Yw

because undoing the transaction has no added value in a work-

flow process. Transactions for which an inverse does not exist

should be handled with great care. For all local transactions

that cause a relevant state change in a business process,

verse transaction should normally be specified. The invers

may have a quite different implementation than the ‘original’

— for example, the inverse of giving out cash at an ATM maycomplete, formal specification of algorithms for global trans-

be sending an Invoice to the customer. . action management as informally introduced in Sect. 2.2. This
In constructing a compensating graph as discussed abov?

transacti : . é)rmal specification can be practically used in three ways:
ions without compensating counterpart are replace

by empty (dummy) compensating transactions. For reasons ofe Firstly, the specifications provide a complete and unam-
efficiency in compensation execution, these empty compensa- biguous functional specification for the design of a trans-
tion transactions can be removed from the constructed com- action management subsystem. The high-level functions
pensation graph by contracting it with respect to the nodes cor- completely specify the interfaces to the subsystem and the
responding to empty compensation actions (dummies). This lower-level functions completely specify the internals.

€ predv(G,v))(equal (v, w))

g‘.B Application of the formalism

In the current and the previous sections, we have described a

functionality is quite easily specified in functidiiterd using e Secondly, the specifications provide the basis for formal
functionfilterf introduced above (note that predicaiemmy analysis of transactional behavior of workflows during
is context-free and thus does not require the compensation workflow design. Given the unambiguous nature of the
graph as an argument): algorithms, effects of transactional primitives like abort
can be statically analyzed in detail.
filterd(G) = filter f(G, dummyf) e Thirdly, the algorithms can be used as the basis for a simple
dummy f(G,v) = dummy(v) tool that provides on-the-fly insight in the effect of global

aborts during the execution of a workflow. Using partial

abort is practical in real-world business processes, but end
We base an example on the compensation graph of Fig. 8. As- users invoking an abort should have the means to check
sume that steps P and J do not have compensating counterparts, what part of a complex process will be affected by an abort.
i.e.,, Pt and J! are empty actions. Then these empty actions
can be removed from the graph, resulting in the compensatio‘r}iC
graph shown in Fig. 9.

In the next section, we move from formal algorithm spec-
ation to the design of software architectures implement-
ing the algorithms. In doing so, we focus on the first above
Removing idempotent steps.An idempotent compensation use of the formal specifications. More concretely, we show
step is a step that produces the same effect no matter hoim Sect. 6.1 in detail how the formal functions can be mapped
many times it is executed in sequence. If we have an applionto software components.

cation step that modifies an application variable, a compen-

sation step could set this variable to a default value. Clearly,

the compensation step is idempotent: if in the workflow the6 Architecture

application step is executed several times in sequence, the

compensation needs to be executed only once. For this putn this section, we present a system architecture designed to
pose, we introduce functidfiiteri that removes unnecessary support the transaction mechanisms discussed in the previ-
idempotent steps from a compensation graph. This predicateus sections. We discuss the architecture in both an abstract

P. Grefen et al.: Global transaction support for workflow management systems 327

[seffilter | (abort]

startgt

storespec

GT_Engine

Fig. 11.GT_Engine and GT class interfaces

and a concrete version. The global transaction support (GTS Command Interface
subsystem is designed to serve in general process-orientex
systems requiring high-level transactional semantics. This ap
proach is reflected below by discussing an abstract system a
chitecture supporting global transaction management. Next Control Kernel
the concrete implementation of the GTS is discussed, whic Logic Logic
is applied in a stand-alone test environment. The integratior
of the GTS in the FORO workflow management system is
discussed, as realized in the WIDE project. FORO is a com-
mercial WFMS [18] marketed by Sema Group. Finally, we Data Interface
show how the architecture can be extended to deal with dis-
tributed global transactions, i.e., global transactions that spapig. 12. Internal GT engine architecture
multiple process engines.

through interfacél, e.g. the start of a process step and the end
6.1 Abstract architecture of a process step. These events are used by the GT instance to
update the state of the global transaction.

The abstract architecture of the GTS and its environment are When the process engine signals a global abort for a pro-
depicted in Fig. 10. The left-hand side of the figure depicts thecess instance, the GT engine is informed about this through
GTS system that serves as a ‘transaction semantics serverhterfacell. This corresponds to invoking functi@abort as
The right-hand side of the figure shows the client process enspecified in Sect.5.2. Next, the GT engine retrieves the exe-
actment system that uses the GTS system. At the bottom isution graph of the global transaction from the correspond-
the persistent storage that holds non-volatile information likeing GT instance object, calculates the required compensating
global transaction specification and execution graphs; this maglobal transaction, and stores the specification of this transac-
be the same storage forthe GTS and client system, but not netion through the GT instance object (using interfacvice).
essarily so. It then informs the process engine about the name of the com-

The client system consists of a process engine and a nunpensating transaction and the restart points in the original
ber of process instance objects. The process engine interpretsransaction using interfacé. These steps correspond with the
workflow process specification (i.e., a global transaction specfunction calls specified in the compensation driver (function
ification graph as defined in Sect. 3) and performs schedulingbortas defined in Sect.5.2). The process engine executes the
among process instances. Each process instance object repo®mpensating transaction and then restarts the original global
sents a separate invocation of a process specification. Itis cotransaction at the indicated restart points.
trolled by the process engine using interfatgsee Fig. 10). The high-level functions for global transaction manage-
The object holds all relevant status information of the pro-mentthat we have introduced in Sections 4 and 5 of this paper
cess instance. Process instance objects are created and deletad be mapped directly to the abstract software architecture
dynamically at process invocation, respectively, process tershown in Fig. 10. We have depicted this mappingin Fig. 11. On
mination. the left, we see the interfaces of the G&hgine object class, of

The GTS system consists of a GT engine and a numbewhich a GT engine is instantiated. From Sect. 5, we only have
of GT instance objects. The engine provides global rollbackihe interface to functioabort We have added an interface to
functionality as described above. Each GT instance object repa functionsetfilterhere, to illustrate how the filter behavior of
resents a running global transaction and holds all relevant stahe GT engine can be influenced. This function sets a complex
tus information, most importantly the execution graph of thestate variable in the GT engine the value of which is used as an
global transaction as defined in Sect. 4. Like process instancargument for functioffilter as introduced in Sect.5.5. On the
objects, GT instance objects are created and deleted dynamiight side of the figure, we see the interfaces of the GT object
cally. GT objects implement the functions related to executionclass, of which GT instances are created. Horizontally, we see
graph maintenance defined in Sect. 4.3. the interfaces used by the client system to the functions de-

Process instance and GT instance objects are coupled onfred in Sect. 4 (through interfacéin Fig. 10). Vertically, we
to-one, as a process instance corresponds to a global transaee the interfaces to the functions required by the GT engine as
tion instance. During its life cycle, a process instance objectlescribed in Sect.5.2. The interfaces of the classes correspond
informs its GT instance object of all relevant process eventdo methods in the object-oriented paradigm.

328 P. Grefen et al.: Global transaction support for workflow management systems
7 gtm t
ExecGraph: CompGraph: I & at ol
START Test2LT1 /1 '\, [START CTest2LT8 T
Test2LT1 {1 --» Test2LT2 £ 1 CTest2LT4 CTest2LT8 ENABLE CTest2LT3
TestzLT2 /1 --» Test2LT3 £ 1 END CTestzLT3 (= i LG 4 i) X
TestzLT3 1 --> TestzLT4 £ 1 CTestzLT8 ENABLE CTest2LT3 BN 1S LI) SRE
TestzLT4 {1 --» Test2LTs £ 1 CTestzLT5 EMABLE CTest2LTd [E00] O VESEILED 1) B
TestzLT2 /1 - > Test2LTE £ 1 L IESEEL 1) S
T I 1]~ Troe T 51 End of Test2LT5 /1 Stored
TestzLT3 /1 --» TestzLTB /1 A TEIRALINS 1] SEd
TestzLT5 /1 --» Test2LTB £ 1 (= O LS 41 S
TestzLT8 /1 —-> TestzLT10 /1 7 7 (ESELIT [B ST
Start Test2LT7 /1 Stored
CIEeEInSS End of Test2LT7 /1 Stored
GTM Published [X Start TestZLTB /1 Stored
Compensation requested End of TestZLTa f 1 Stored
Retrieving Execution Graph Start TestZLTa9 /1 Stored
Constructing Compensation Graph Start TestZLT10 /1 Stored
Store Compensation Graph
Execution Graph retrieved
CompW¥fld = wide:/fsema.esfTaskficompWFld
Creating Comp Process Model
Comp Process Model stored
£ Returming Compensation ld _/

Fig. 13.GTS front end

Note that the efficiency of the algorithms of the GT en- control logic and would leave the internals of the kernel logic
gine (the performance of the module) is not too important,unaffected.
since the engine deals with long-running workflow processes In the previous subsection, we have seen that the GTS
in distributed environments. Efficient results of the GT enginemodule mainly implements functicabort To show how the
algorithms (i.e., efficient compensation graphs) are relevantinternal architecture of the GTS maps to the functional spec-
however, as they determine the workload for the process erification in the previous chapter, we recall the compensation
gine. The former observation enables straightforward impledriver function from Sect.5.2:
mentation of the algorithms presented in this paper, without
too much attention to optimization. The latter observation is
the reason why we pay attention to compensation graph filter-
ing in the algorithms.

bort(m,n,v) = storespec(gcomp(m,
getexec(n),v), newid(n))

Functionabort is implemented in the command interface as

shown in Fig.12. The command interface will perform some

input checking and delegate the actual execution of the func-
ct tionto the control logic. The control logic actually implements
Tthe compensation driver, as specified in the function above.

engine. Then we show how the implemented GTS has beefy"©M this function, the functionality gficompis allocated en-
used in a stand-alone test environment. In Sect.6.3. we W”prely to the kernel logic. The kernel logic is stateless between

turn to the integration in a WFMS architecture. Invocations ofyjcomp The data logic interfaces to tigetexeg
newid andstorespedunctions, which are allocated to the GT

Internal GT engine architecture. The internal architecture instance objects, as shown in Fig. 11.
of the GT engine is based on the standard software module
architecture chosen in the WIDE project, as shown in Fig. 12Test environment. Because of the modular architecture de-
The GT engine communicates with its context through twopicted in Fig. 10, the implementation of the GTS could easily
interfaces: the command interface to a process engine and thee tested in a stand-alone environment with mock-up process
data interface to GT instances. The command interface covengine and process instances. This stand-alone environment
ers the ‘transaction semantics server’ functionality discussedllows software testing in completely controlled conditions.
above. The data interface covers the connections to servicdsalso allows to easily feed the GTS with specific rollback
that the GT engine relies on. Both interfaces use a CORBAsituations to test its compliance with the algorithms outlined
mechanism [46] for communication with the environment (we in the previous sections of this paper.
will address this further when discussing the integrated archi- To provide an easy-to-use user interface to the test envi-
tecture below). ronment, a graphical front-end has been constructed using the
Theinternallogic of the GT engineis separated into controlTCL/TK toolkit [47]. This front-end is shown in Fig. 13. The
logic and kernel logic. The former controls the internal oper-firstwindow displays the operations on the execution and com-
ation of the engine and drives the interface logic. The lattempensation graphs and the communication actions of the GT
contains the algorithms for complete and partial compensaengine (in the window called ‘GTM’ for Global Transaction
tion as described in this paper. In the current implementationManager). The second window displays the communication
the GT engine is single-threaded, i.e., it can handle one abogctions of a GT instance (in the window called ‘GT’). Using
request at a time. A multi-threaded version would easily bethe output in these windows, the dynamic behavior of the GTS
feasible, however: this would mainly require changes to thecan be monitored.

6.2 GTS software architecture

A GTS implementation has been realized in the WIDE proje
Below, we first discuss the internal architecture of the G

P. Grefen et al.: Global transaction support for workflow management systems 329

GT Workflow need for this functionality arises if multiple process engines
Engine Interpreter execute one overall process that requires transactional behav-
ior. This situation occurs for instance if multiple organiza-

‘ ‘ H tions or independent parts of organizations enact processes

| that cross their boundaries.
| GT workflow In the distributed GT architecture, each GTM computes
nstance |H Case . . - -

» compensation graphs for its part of the execution graph, using
the algorithms specified in this paper. Control over the over-
all compensation process is achieved through communication

Basic Access Layer protocols between the GTMs. To facilitate this communica-
I I tion, a second peer-to-peer command interface can be added
to the internal GT engine architecture as depicted in Fig. 12.
DBMS The overall architecture of the distributed GTS is depicted in
Fig. 15. In this figure[d is the peer-to-peer interface between
process engines used to coordinate distributed workflows. In-
Fig. 14.FORO GTS architecture terfacell is the interface between GT engines used to coordi-
nate distributed rollbacks. Further details on the architecture
and communication protocols can be found in [51].
6.3 Integrated WFMS architecture Avariation on the distributed GT architecture is used in the
CrossFlow project. In this project, an architecture is designed
In the context of the WIDE project, the implementation of to deal with cross-organizational workflows in dynamic virtual
the GTS is used in a prototype of the next generation of theenterprise environments [27, 28]. In this context, distributed
FORO workflow management system [8, 25]. FORO has beeglobal transactions exist that span the workflows of two or-
equipped with both layers of the WIDE transaction supportganizations that have dynamically integrated their workflow
(as discussed in Sect. 2.1) to provide transaction managemeptocessing [52]. To support these transactions, GT engines
functionality with both a high level of expressiveness and alocated in the workflow environments of two separate, au-
high level of flexibility, as required by complex workflow ap- tonomous organizations have to cooperate.
plication settings.
The architecture of the GTS module in the FORO context
is shown in Fig. 14. This architecture is directly based on the7 Related work
abstract architecture in Fig. 10. The role of the process engine
in the abstract architecture is taken by the FORO workflowIn this section, we provide a discussion of work related to
interpreter. This module interprets workflow specifications inthis paper. We have divided the related work into four topic
the FORO process description language. Workflow case obareas: general work on advanced transaction models, specific
jects take the role of the process instance objects. Each casgork on approaches to compensation in transaction manage-
object manages the process state of a workflow invocation. Agnent, work on transactional workflows (or workflow transac-
in the abstract architecture, case objects send messages to @dns), and formal approaches to transaction semantics. Note
objects to manage their transactional state. that some of the work discussed below can be categorized in
The FORO architecture is implemented in a CORBA en-multiple areas —in these cases we have chosen the area that we
vironment [46] that allows for flexible distribution in the ar- considered most appropriate in painting a complete overview
chitecture [24]. Both GT engine and GT instances are impleof the field of work related to this paper.
mented as CORBA objects. This allows for a flexible coupling
of GT engines and workflow engines: if global rollbacks are
seldom, one GT engine can serve multiple workflow enginesy.1 Advanced transaction models and environments
if global rollbacks are frequent, a workflow engine may use
multiple GT engines. The persistent storage consists of a Basigdvanced (or extended) transaction models have been given
Access Layer (BAL) and a commercial relational DBMS. The considerable attention in the past decade; see for example
BAL hides DBMS-specific details, such that easy portability [17, 34] for overviews. Typical examples of advanced transac-
between DBMS platforms is achieved. tion models for long-running processes are nested transactions
The modular approach to transaction management witl15, 16], multi-level transactions [53], sagas [19], and nested
simple, high-level interfaces and well-defined semantics a|-sagas [20, 2]_]_ General frameworks have been constructed,
lows for flexible system composition. As such, the resultinglike ACTA [10], that provide a conceptual framework for con-
system architecture can be considered a federation of workstructing or analyzing extended transaction models.
flow and transaction servers, based on middleware services [ow-level mechanisms have been proposed to provide a
that hide distribution details. ‘tool-box’ approach to advanced transaction management. The
best-known example in this category is probably the ConTracts
approach [48, 49]. ConTracts are not an extended transaction
6.4 Distributed GT architecture model, but an environment that provides the basis for reliable
execution of long-lived computations. As such, the Contracts
The GTS architecture can be easily extended to deal witlapproach have been used for the realization of transactional
global transactions that span multiple process engines. Theorkflows.

330 P. Grefen et al.: Global transaction support for workflow management systems

(5]
l 6
Comm Comm Comm Comm
Process GT Process GT
Engine Engine Engine Engine
‘ — ‘ —
Process GT Process GT
Instance |- Instance Instance |H Instance
Persistent Storage Persistent Storage

Fig. 15.Distributed GT architecture

In the WIDE project, an orthogonal two-level transaction The emphasis is on determining the horizon (dynamic appli-
model is used to effectively model both long-running pro- cability) of compensation in nested structures, whereas we
cesses and relatively short-running subprocesses [23]. In thisoncentrate on constructing compensation patterns for arbi-
paper, we focus on the semantics of and support for the uptrary process graphs. Our approach to partial compensation
per level of this model. This level is a transaction model with can be used to bound the effects of compensation. Again, our
relaxed ACID properties using a compensation mechanisnwork contrasts to the work in [41] in the fact that we provide
for rollback operations related to sagas as presented in [19h complete formal specification of compensating transaction
Our approach to compensation is more comprehensive, hownanagement mechanisms, whereas most other work relies on
ever, in a number of ways. The separation of specification anéhformal descriptions.
execution graphs provides a natural way to handle cycles in Compensation is an important ingredient of the ConTracts
processes. The concept of safepoint provides a flexible noapproach [48, 49]. The main difference with our work is the
tion of partial compensation. The optimizations discussed irfact that ConTracts rely on the specification of compensating
Sect. 5.5 provide possibilities to reduce the cost of performingblocks to compensate groups of steps [49]. In our approach,
compensations. The WIDE model is based on a single-levetompensation graphs are dynamically constructed from com-
process model, so it does not cover nested sagas [20, 21], bpensating steps for this purpose. Given the semantic struc-
can easily be extended in this direction. ture of the ConTracts model, partial compensation has to be

A hybrid transaction model is also discussed in [9], in ‘applied with great care’ [49]. In the WIDE model, partial
which transaction hierarchies are described that contain flatompensation is usually the default approach. This is possible
structured transactions. Dependencies between hierarchies dsecause the consistency of the WIDE model is not as strictly
supported by cross-hierarchy failure handling. In the WIDE defined as those of the ConTracts model — it relies more on
approach, nested processes with flat, structured levels are sugpplication semantics.
ported in the lower level of the transaction model. Dependen- The Coyote approach [12] also relies on compensation
cies between nested constructs are represented in the upgerprovide rollback functionality. In Coyote, compensation is
level of the transaction model, consisting of arbitrary procesaised in a conversational model for long-running transactions.
graphs. Apart from differences in the transaction model itself,The work in the Coyote project is focused on application style
the main difference between the work in [9] and that in thisand system architecture issue a formal background on the
paper, is that we aim at a formal specification of the semanticeompensation approach is not given.
of transaction mechanisms, instead of using text and pseudo-
code descriptions.

7.3 Transactional workflows

7.2 Compensation approaches As it has been widely recognized that transactional semantics
are an important aspect of workflow management, transaction
Compensation is nowadays generally considered a proper wayechanisms dedicated for workflow environments have been
to handle application rollback, not only in workflow contexts. studied in recent years. A number of early proposals is dis-
The position of [4], for example, is that ‘every well-designed cussed in [31] and a more recent overview is given in [11]. A
TP application should include a compensating transaction typeharacterization of transactions in workflow contexts is given
for every type of transaction’. Compensation is not only usedin [2], stressing that advanced transaction management is in-
for ‘direct’ rollbacks, but also as an ingredient to higher-level deed required, but not yet offered by existing systems. The
notions. In the OPERA system, for example, compensation ismportance of transactional aspects of workflows in produc-
used in a flexible exception handling approach [30]. tion contexts is stressed in [45].
An advanced transaction compensation mechanism is dis- Work that focuses on high-level transaction management
cussedin[41]inthe context of a multi-level transaction model.for workflow environments has been performed in the Exotica

P. Grefen et al.: Global transaction support for workflow management systems 331

project[1]. Like the global transactions discussed inthis paper, The TSME approach aims at supporting transactional
the Exotica approach uses compensation to perform rollbackorkflows by providing a programmable transaction manage-
operations, as originally described by the saga model [19]. Thenent environment for workflow management [22]. As such,
compensation mechanisms in Exotica are of a static naturghe aim of TSME is comparable to that of the ConTracts
however, and lack a formal specification as given in this paperapproach mentioned above. The dependency descriptors of
In the FlowBack project [37], an approach similar to the TSME can be compared to those of ACTA — details are in-
Exotica approach has been followed. Both in Exotica andcluded in [22].
FlowBack, compensation plans are generated based on the A flexible approach for compensating workflows, called
workflow specification. In the approach presented in this pa-opportunistic compensation, has been developed in the context
per, the actual workflow execution is the basis for compensaef the CREW project at the University of Massachusetts [36].
tion plan generation. In this approach, execution and compensation dependencies
An approach to compensation in the context of IBM’s between workflow steps are explicitly specified in the LAWS
FlowMark WFMS [43] is discussed in [44]. Where our ap- workflow specification language. Although the explicit speci-
proach to partial rollback is based on the notion of safepointdication of dependencies provides more flexibility than our ap-
in the workflow specification, the approach in [44] is basedproach (in which compensation dependencies follow directly
on the notion of ‘spheres of joint compensation’. As such,from control flowin a process), it can also lead to very complex
in our approach process annotations are made that impactstuations with unclear semantics, e.g., in the case of parallel
complete workflow specification, whereas in the FlowMark compensation and (re)execution. The semantics of the LAWS
approach annotations are made that impact parts of workflovprimitives are, however, only addressed informally in [36].
specifications. The work in [44] presents an approach of how
to integrate compensation into FlowMark. Complete specifi- o))
cation of algorithms is not provided. At the time of writing 7-4 Formal specification of transaction semantics
this paper, compensation functionality has not been realize@nd mechanisms
in FlowMark or its successor MQSeries Workflow [33]. A e . .
Formal specification of transaction semantics has been ad-

prototype extension to provide basic support for compensa-
tion functionality has been realized in the CrossFlow project,dressed by anumber of researchers. In [38], a formal treatment

however [28, 52]. of compensating transactions is given. The focus is on the cor-

Compensation is an ingredient of the METEOR aIOIOroachrectness of individual compensating transactions. The work
[39]. The work includes specification of task compensation in'Ve present in this paper focuses on the construction of com-

the WFSL workflow specification language and the enactmenPIex compensating graphs (global transactions) consisting of

of compensation. Complete algorithms for specification and é)redeﬂned compensating transactions. As such, it can be seen

formal semantics are not given, however. Handling of compenf’ls complementary to the work n [38]. Formal specification
sation is also considered in the OpenPM project at Hewlett-Of transaction mechanisms contr!butes to the assessment of
Packard [14], but detailed algorithms or a formal backgroundthe correctness of these mechanisms and of the applications

are not given in this work. Their notion of ‘compensation using these mechanisms. This paper addresses the aspect of

points’is comparable to our notion of safepoints. The Semanpompensanon semantics in proce_zss-centered applications like
tics of partial compensation are, however, specified very im‘or—Workﬂf]W management%As such, it caln be used th forrlz}?lly as-
mally in [14] — we provide a precise, unambiguous specifica—seSSt e corrrt]actness of transactional aspects o Wﬁrd OWI sys;j
tion based on safepoints. The work on the Virtual Transactior;[ems using the transaction management approach develope

(VT) model at Hewlett-Packard [40] continues the work in the in the WIDE project [23]. : : .
context of OpenPM. A compensation model is used of which__ formal approach to complex transactions in composite
‘compensation end points’ are comparable to our safepoint ystems is presented in [3]. This work describes the seman-

and of which a ‘compensation strategy’ distinguishes betwee Qgiigfscggﬂegoﬂanfgﬁgﬂg g;;'éﬁg”;gﬂg 'gntgr.rgiisc;f tshgezs
‘all and ‘reachable’ compensation modes — comparable to y P ' ' J - >ag

our complete and partial compensation modes. The forwar@{lzg?feﬁgst'g ;hc')snf;awievﬁloa{gs?aiggmg\]gIthﬁgecevgllir{gnncé
rollback mechanism used after compensation provides thre‘é.med at analvzin thego erational semanfics of sa0as. how-
alternative strategies (redo, alternate path, and terminate) th&l yzing P gas,

are not included in the mechanism presented in this paper bt er- '?‘f iuﬁh’ [3] can b‘?ICO”S'dEfedh‘?‘ high-level framtTwork,
that can be added easily to our approach. Semantics of the V to which the more detailed work in this paper can be placed.

mode are speciied only informall, however, and mapping top & 2t 00 EBEERREURe B Eo e e e o ol
supporting systems is not dealt with in detail in [40]. y y

The ObjectFlow approach to rollback on the business prc)process management are given for contexts with transactional

cess level in workflows relies on restoring process states [32]§ubsystems. . . .
This approach relies on persistence of data and can be con- Mpre general observations with respect to correctness Is-
sidered orthogonal to the compensation approach: the form{rues in Wor_kflow management are presented in [35] in an in-
approach relies onreinstalling a previous state whereas the la prmal fashion.
ter approach tries to recompute a state equivalent to a previous

state. Equivalence in this context is an application-dependery conclusions

concept. In [32], extension of the ObjectFlow approach with

limited compensation functionality is considered, however. In this paper, we present the formal specification of a complete

high-level transaction mechanism. The mechanism provides

332 P. Grefen et al.: Global transaction support for workflow management systems

an approach to advanced transaction management in processgorithms are applied in a three-level process model sup-
centric environments that fulfils requirements of real-world porting cross-organizational workflows [52]. Heterogeneous
application contexts with relaxed transactional requirementstederated environments are typically found in electronic com-
The mechanism can easily be coupled to a low-level transaaonerce scenarios, where tightly coupled transactional interac-

tion mechanism to obtain two-level recovery functionality. In tion is often not appropriate [13].

the WIDE project, this coupling has been demonstrated with
a low-level nested transaction model.

The distinction between specification and execution
graphs in our approach allows effective handling of cycli-
cal process structures. The abstraction of workflow processes

AcknowledgementsThanks go to Stefano Ceri of the Politecnico di
Milano for his comments on an earlier version of this work. Wijnand
Derks of KPN Research is acknowledged for his feedback on parts
this paper. All members of the WIDE team are acknowledged for

on the one hand and separation of workflow definition timeneir role in the realization of the architecture described in this paper.

and enactment time formalisms on the other hand also pro-
vides an independence of specific workflow specification lan-

guages. The concept of partial compensation allows for flexiReferences

bly bounding the effects of compensation. Efficiency aspects
are taken into account in the mechanism through the inclu- 1.
sion of compensation graph filtering. The formal specifica-
tion clearly and unambiguously describes the semantics of the
mechanism, which are not obvious in complex partial rollback 2:
situations. The simple formalisms used make the approach
well digestible, however. We believe that the integration of a
formal specification and operational approach provides a step
towards the practical use of advanced transaction mechanisms.

This work shows that it is well feasible to provide for-
mal semantics of real-world advanced transaction manage-
ment systems, closely coupled to a system architecture. Theg,
approach presented is not limited to WIDE global transactions,
but can be applied to other transaction models as well.

The formal semantics of the transaction mechanisms pre-
sented in this paper are useful for the developers of a trans-6.
action management subsystem: essentially, it provides a com-
plete and unambiguous functional specification of the system. 7.
If ‘wrapped’ in the right tools, the formal semantics can be of
use for advanced users of the underlying transaction model —8-
both application designers and advanced end users. The for-
mal semantics can be the basis for static formal validation of
transactional behavior of complex workflow processes. The
compensation algorithms can be used in workflow analysis
tools to present the designer or end user with automated aids
in analyzing the effects of specific global transaction designs, 4
(e.g., the scope of partial rollback in specific situations).

A prototype of the transaction mechanism specified in this

paper has been realized in the WIDE project, providing both11.

complete and partial rollback functionality as described in this
paper. It has beenintegrated with the FORO workflow manage-

ment system, resulting in a flexible, distributed architecture. 12.

The prototype system has been employed in two demonstra-
tor environments, one in the insurance and one in the medical
domain [25].

The transaction model and mechanisms described in thig'3:
paper can be extended in a number of ways. Even more flexi-
bility in rollback behavior can be obtained by using dynamic
safepoints, i.e., steps that are dynamically assigned the safe
point label based on expressions over the transaction state.
Global transactions that are distributed over multiple transac-
tion engines can be supported by a distributed global transac-
tion system, as outlined in this paper and described in more
detail in [51].

An application of the work presented in this paper to het- 16,
erogeneous federated environments is one of the topics of the
CrossFlow project [27, 28, 29]. In this project, compensation

G. Alonso et al. (1996) Advanced Transaction Models in Work-
flow Contexts; Procs. Int. Conf. on Data Engineering; New Or-
leans, Louisiana, USA, pp.574-581

G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan (1997) Func-

tionality and Limitations of Current Workflow Management

Systems; IEEE Expert; Vol. 12, No. 5

3. G. Alonso, A. Fessler, G. Pardon, H-J. Schek (1999) Transac-

tions in Stack, Fork, and Join Composite Systems; Prdés. 7
Int. Conf. on Database Theory; Jerusalem, Israel, pp. 150-168

4. P. Bernstein, E. Newcomer (1997) Principles of Transaction

Processing; Morgan Kaufmann

E. Boertjes, P. Grefen, J. Vonk, P. Apers (1998) An Architecture
for Nested Transaction Support on Standard Database Systems;
Procs. 9th Int. Conf. on Database and Expert System Applica-
tions; Vienna, Austria, pp.448-459

G. Booch, J. Rumbaugh, |. Jacobson (1999) The Unified Mod-
eling Language User Guide; Addison-Wesley

F. Casatietal. (1996) WIDE: Workflow Model and Architecture;
CTIT Technical Report 96-19; University of Twente

S. Ceri, P. Grefen, G.achez (1997) WIDE — A Distributed
Architecture for Workflow Management; Procs. 7th Int. Work-
shop on Research Issues in Data Engineering; Birmingham, UK,
pp.76-79

9. Q. Chen, U. Dayal (1997) Failure Handling for Transaction Hi-

erarches; Procs. #3Int. Conf. on Data Engineering; Birming-
ham, UK, pp.245-254

. P.K. Chrysanthis, K. Ramamritham (1994) Synthesis of Ex-

tended Transaction Models using ACTA; ACM Transactions on
Database Systems, 19-3, pp.450-491

A. Cichocki, A. Helal, M. Rusinckiewicz, D. Woelk (1998)
Workflow and Process Automation: Concepts and Technology;
Kluwer Academic Publishers

A. Dan, F. Parr (1997) The Coyote Approach for Network Cen-
tric Service Applications: Conversational Service Transactions,
a Monitor and an Application Style; Procs. High Performance
Transaction Processing Workshop; Asilomar, CA

A.Danc.s. (2000) Business to Business Integration with TpaML
and a B2B Protocol Framework (BPF); IBM Research Report
RC 21863; IBM Research, USA

J. Davis, W. Du, M. Shan (1995) OpenPM: an Enterprise Process
Management System; IEEE Data Engineering Bulletin, Vol. 18,
No. 1, pp.27-32

15. U. Dayal, M. Hsu, R. Ladin (1990) Organizing Long-Running

Activities with Triggers and Transactions; Procs. 1990 ACM
SIGMOD Int. Conf. on Management of Data; Atlantic City,
USA, pp.204-214

U. Dayal, M. Hsu, R. Ladin (1991) A Transactional Model for
Long-Running Activities; Procs. 17th Int. Conf. on Very Large
Databases; Barcelona, Spain, pp.113-122

P. Grefen et al.: Global transaction support for workflow management systems

333

17. AK. EImagarmid (Ed.) (1992) Database Transaction Models 36. M. Kamath, K. Ramamritham (1998) Failure Handling and Co-

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

for Advanced Applications; Morgan Kaufmann; USA
FORO Web Site (2001)
http://dis.sema.es/projects/FORO/foro.html;Sema Group,Spain

H. Garcia-Molina, K. Salem (1987) Sagas; Procs. 1987 ACM 37.

SIGMOD Int. Conf. on Management of Data; San Francisco,
California, USA, pp.249-259
H. Garcia-Molina et al. (1991) Modeling Long-Running Activ-

ities as Nested Sagas; IEEE Data Engineering Bulletin, Vol. 14, 38.

No. 1, pp.14-18

H. Garcia-Molina et al. (1998) Coordinating Multitransaction

Activities with Nested Sagas; in [42]; Ch. 16, pp.466-481

D. Georgakopoulos, M. Hornick, F. Manola (1996) Customiz-

ing Transaction Models and Mechanisms in a Programmable

Environment Supporting Reliable Workflow Automation; IEEE 40.

Trans. on Knowledge and Data Engineering, Vol. 8, No. 4,
pp.630—649

P. Grefen, J. Vonk, E. Boertjes, P. Apers (1997) Two-Layer 41.

Transaction Management for Workflow Management Applica-
tions;Procs. 8 Int. Conf. on Database and Expert System Ap-
plications; Toulouse, France, pp.430-439

P. Grefen, R. Wieringa (1998) Subsystem Design Guidelines for42.

Extensible General-Purpose Software; Pro&$.8t. Software
Architecture Workshop; Orlando, USA, pp.49-52

P. Grefen, B. Pernici, Gafchez (Eds.) (1999) Database Sup-
port for Workflow Management: The WIDE Project; Kluwer
Academic Publishers

P. Grefen, J. Vonk, E. Boertjes, P. Apers (1999) Semantics and
Architecture of Global Transaction Support in Workflow Envi-
ronments; Procs.4 IFCIS Int. Conf. On Cooperative Informa-
tion Systems; Edinburgh, Scotland, pp. 348-359

P. Grefen, Y. Hoffner (1999) CrossFlow: Cross-Organizational

Workflow Support for Virtual Organizations; Proceedings In- 46.

ternational Workshop on Research Issues in Data Engineering;
Sydney, Australia, pp.90-91

P. Grefen, K. Aberer, Y. Hoffner, H. Ludwig (2000) CrossFlow: 47.
Cross-Organizational Workflow Management in Dynamic Vir- 48.

tual Enterprises; Int. Journ. of Computer Systems Science &
Engineering, Vol. 15, No. 5, pp.277-290
P. Grefen, K. Aberer, H. Ludwig, Y. Hoffner (2001) CrossFlow:

Cross-Organizational Workflow Management for Service Out- 49.

sourcing in Dynamic Virtual Enterprises; IEEE Data Engineer-

ing Bulletin, Vol. 24, No. 1, pp.52-57

C. Hagen, G. Alonso (1998) Flexible Exception Handling in

the OPERA Process Support Systems; Proc{ It&. Conf.

on Distributed Computing Systems; Amsterdam, Netherlands,
pp.526-533

M. Hsu (Ed.) (1993) Special Issue on Workflow and Extended
Transaction Systems; IEEE Data Engineering Bulletin, Vol. 16,
No. 2

M. Hsu, C. Kleissner (1998) ObjectFlow and Recovery in Work- 52.

flow Systems; in [42]; Ch. 18, pp.505-527

MQSeries Workflow Web Site (2001)
http://www-4.ibm.com/software/ts/mqseries/workflow/; 1BM,
USA

S. Jajodia, L . Kerschberg (1997) Advanced Transaction Models
and Architectures; Kluwer Adademic Publishers

M. Kamath, K. Ramamritham (1996) Correctness Issues in54.

Workflow Management; Distributed Systems Engineering Jour-
nal; Vol. 3, No. 4, pp.213-221

39.

43.

44.

45.

50.

51.

53.

ordinated Execution of Concurrent Workflows; Proc<1ut.
Conf. on Data Engineering; Orlando, Florida, USA, pp.334—
341

B. Kiepuszewski, R. Muhlberger, M. Orlowska (1998) Flow-
Back: Providing Backward Recovery for Workflow Manage-
ment Systems; Procs. 1998 ACM SIGMOD Int. Conf. On Man-
agement of Data; Seattle, USA, pp.555-557

H. Korth, E. Levy, A. Silberschatz (1990) A Formal Approach to
Recovery by Compensating Transactions; Proc4. it. Conf.

on Very Large Databases; Brisbane, Australia, pp. 95-106

N. Krishnakumar, A. Sheth (1995) Managing Heterogeneous
Multi-system Tasks to Support Enterprise-wide Operations;
Distributed and Parallel Databases, Vol. 3, No. 2

V. Krishnamoorthy, M. Shan (2000) Virtual Transaction Model
to Support Workflow Applications; Procs. 2000 ACM Sympo-
sium on Applied Computing; Como, Italy, pp.876—881

P. Krychniak et al. (1996) Bounding the Effects of Compensa-
tion under Relaxed Multi-Level Serializability; Distributed and
Parallel Databases, Vol. 4, No. 4; Kluwer Academic, pp.355—
374

V. Kumar, M. Hsu (eds.) (1998) Recovery Mechanisms in
Database Systems; Prentice Hall

F. Leymann, D. Roller (1994) Business Process Management
with FlowMark; Procs. 39th IEEE Computer Society Int. Conf.;
San Francisco, USA, pp.230-234

F. Leymann (1995) Supporting Business Transactions via Par-
tial Backward Recovery in Workflow Management Systems;
Procs. Datenbanksysteme in®; Technik und Wissenschaft;
Dresden, Germany, pp.51-70

F. Leymann, D. Roller (2000) Production Workflow — Concepts
and Techniques; Prentice Hall PTR

Object Management Group (1995) The Common Object Re-
quest Broker: Architecture and Specification, Version 2.0; Ob-
ject Management Group

J. Ousterhout (1994) Tcl and the Tk Toolkit; Addison-Wesley
A. Reuter, F. Schwenkreis (1995) ConTracts - A Low-Level
Mechanism for Building General-Purpose Workflow Manage-
ment Systems; IEEE Data Engineering Bulletin, Vol. 18, No. 1,
pp.4-10

A. Reuter, K. Schneider, F. Schwenkreis (1997) Contracts Re-
visited; in [34]; Ch. 5, pp.127-151

H. Schuldt, G. Alonso, H-J. Schek (1999) Concurrency Con-
trol and Recovery in Transactional Process Management; Procs.
18th ACM Symp. on Principles of Database Systems; Philapdel-
phia, USA, pp.316-326

J. Vonk, P. Grefen, E. Boertjes, P. Apers (1999) Distributed
Global Transaction Support for Workflow Management Appli-
cations; Procs. 0 Int. Conf. on Database and Expert System
Applications; Florence, Italy, pp.942-951

J. Vonk, W. Derks, P. Grefen, M. Koetsier (2000) Cross-
Organizational Transaction Support for Virtual Enterprises;
Procs. %" Int. Conf. on Cooperative Information Systems; Eilat,
Israel, pp.323-334

G. Weikum (1991) Principles and Realization Strategies of
Multilevel Transaction Management; ACM Transactions on
Database Systems, \ol. 16, No. 1, pp.132-180

J.Widom, S. Ceri (Eds.) (1996) Active Database Systems: Trig-
gers and Rules for Advanced Database Processing; Morgan
Kaufmann

