E HEWLETT
"B pPACKARD

Policies in a Resource Manager
of Workflow Systems: Modeling,
Enforcement and Management

Yan-Nong Huang, Ming-Chien Shan
Software Technology Laboratory
HPL-98-156

September, 1998

E-mail: [ynhuang,shan]@hpl.hp.com

workflow, resource, This paper proposes a new method to handle policies
policy, in Resource Management of Workflow Systems. Three
interval-based, types of policies are studied including qualification,
qguery rewriting requirement and substitution policies. The first two

types of policies map an activity specification into
constraints on resources that are qualified to carry out
the activity. The third type of policy intends to suggest
alternatives in cases where requested resources are
not available. An SQL-like language is used to specify
policies. Policy enforcement is realized through a
query rewriting based on relevant policies. A novel
approach is investigated for effective management of
large policy bases, which consists of relational
representation of policies and efficient retrieval of
relevant policies for a given resource query.

o Copyright Hewlett-Packard Company 1998

Policies in a Resource Manager of Workflow Systems:

Modeling, Enforcement and Management

Yan-Nong Huang and Ming-Chien Shan
Hewlett-Packard Laboratories
1501 Page Mill Road, 1U-4A
Palo Alto, California 94304
Email: ynhuang @hpl.hp.com, shan@hpl.hp.com

Abstract This paper proposes a new method to handle policies in Resource Management of
Workflow Systems. Three types of policies are studied including qualification,
requirement and substitution policies. The first two types of policies map an activity
specification into constraints on resources that are qualified to carry out the activity.
The third type of policies intends to suggest alternatives in cases where requested
resources are not available. A SQL-like language is used to specify policies. Policy
enforcement is realized through a query rewriting based on relevant policies. A novel
approach is investigated for effective management of large policy bases, which
consists of relational representation of policies and efficient retrieval of relevant

policies for a given resource query.

Keywords Workflow, Resource, Policy, Interval-Based, Query Rewriting.

1 Introduction

An information system is composed of a database system and one or many applications manipulating the
database. The database system is a common data repository shared among multiple applications. Besides
data, people sometimes move components which seemly belong to applications into the database, so that
multiple applications can share common components. In other words, the common components become
part of the database’s semantics. Active databases are an example of such kind, where dynamic
characteristics of data are pushed down to the database, so the data can always behave the same way no

matter what applications are.

We are interested in Workflow Management Systems (WFMS) [5] [11], and particularly, in Resource
Management (RM) [6] of WEMS. A WFMS consists of coordinating executions of multiple activities,

instructing who (resource) do what (activity) and when. The “when” part is taken care of by the workflow
engine which orders the executions of activities based on a process definition. The “who” part is handled
by the resource manager that aims at finding suitable resources at the run-time for the accomplishment of

an activity as the engine steps through the process definition.

Resources of different kinds (human and material, for example) constitute the information system of our
interest, their management consists of resource modeling and effective allocation upon users’ requests.
Since resource allocation needs to follow certain general guidelines (authority, security, for example) - no
matter who or what application issues requests: so those general guidelines are better considered as part of
the resources’ semantics. That is the reason why we are interested in resource policy management in RM.
Resource policies are general guidelines every individual resource allocation must observe. They differ
from process specific policies which are only applied to a particular process. The policy manager is a
module within the resource manager, responsible for efficiently managing a (potentially large) set of

policies and enforcing them in resource allocation.

We propose to enforce policies by query rewriting. A resource query is sent to the policy manager where
relevant policies are first retrieved, then either additional selection criteria are appended to the initial query
(in the case of requirement policies) or a new query is returned (in the case of substitution policies).
Therefore, the policy manager can be seen as both a regulator and a facilitator where a resource query is
either “polished” or given alternatives in a controlled way before submitted for actual resource retrieval. By

doing so, returned resources can always be guaranteed to fully comply with the resource usage guidelines.

1.1 Design Goals for the Policy Management
Technical issues involved in this study can be presented as the following set of design goals.

1. A simple policy model allowing users to express relationships between an activity and a resource that

can be used to carry out the activity;

2. A Policy Language (PL) allowing users to define policies; PL must be easy to use and as close as
possible to SQL;

3. Resource query enhancement/rewriting: a major functionality of the policy manager is to enforce

policies by enhancing/rewriting the initial resource query;

4. Efficient management of policy base: retrieving relevant policies applicable to a given resource query
may become time-consuming when dealing with a large policy base, strategies are to be devised to

achieve good performance.

1.2 An Overview on Related Work

Policy, as a broad term, has been used in system management of different kinds (see for example,[1], [9],
[4], [7]). Roughly speaking, all policies in a system constitute a set of constraints (which can rigorously be
expressed as a Boolean expression), upon which “legal” actions or “consistent” states are defined. General
enough in the conceptual terms, we believe though policies need to be dealt with on a case-by-case basis;

because systems of different contexts may have significantly different discourse domains.

Policy management has been considered in the workflow management. For example, [1] and [3] discussed

policies for resource allocation. Our work is different from [1] or [3], in that;
1. They basically deal with process specific policies whereas our focus is on the general resource policies.

2. Our policy model is more general. In our model, a policy is composed of an activity and a resource,
activities and resources are organized into two classification hierarchies. So a policy involving a more

general activity and/or a more general resource is applicable to any specific activity or resource.

3. Our implementation is more scalable than theirs. Policies are managed in a relational database,

efficient accesses to a large set of policies are guaranteed by an effective indexing on the policy tables.

4. Our policy model is finer in that given an activity, the user not only can specify the resource type that
can be used to carry out the activity but also properties qualified resources should hold. In the

meantime, our policy language is simpler and close to SQL.

Rule management has been a research issue in other information management fields like active databases or
deductive databases. Rules in these fields usually involve conditions and actions to be fired once the
conditions are met. Actions normally generate new states of the database, which can eventually trigger
other actions. A similar scenario occurs with RM when requested resources are not available, RM could
suggest, through substitution policies (C.f., 3.3), alternatives as replacement. If none of the alternatives
were available, another round of replacements would be necessary. In other words, resource substitution
could eventually take place recursively. Note that RM usually substitutes user-requested resources by
compromising some of the initial requirements. It is clear that one does not want any compromise to
continue “indefinitely”. Therefore, we choose 7ot to substitute the requested resources more than once

before notifying success or failure of the query.
The challenge we are facing, however, is related to the management of a potentially large set of policies.

So far little attention has been paid in the literature to managing effectively large volume of policies,

despite the increasing prominence of the problem as the management task becomes more and more

sophisticated. Representing policies in a computerized way so that relevant policies can be retrieved

efficiently for any given situation is our major concern.

1.3 Paper Organization

The rest of the paper is organized in the following way. In Section 2, we give a brief overview of our
resource manager, with the purpose of showing how the present research is positioned in its context. In
Section 3, three types of policies for resourcc management are presented and the policy language is
illustrated with examples. Query rewriting for policy enforcement is discussed in Section 4. Issues on
managing effectively large policy bases are elaborated in Section 5. An analytical evaluation is given in
Section 6. Some conclusive remarks are drawn in Section 7. The syntax of the resource query language and

the policy language is given in Appendix.

2 Context

In this section, we briefly discuss the context of the present research.

2.1 Architecture

Two main components exist in our Resource Manager (Figure 1). One is the resource manager per se,
responsible for modeling and managing resources; the other is the policy manager allowing the user to
manage policies. Three interfaces are offered, each obviously requiring a different set of access privileges.
The policy language interface allows one to insert new policies and consult existing ones. With the resource
definition language interface, users can manipulate both meta and instance resource data. Finally, the

resource query language interface allows the user to express resource requests.

Policy Resource Query | | Resource Definition
Language Language Language

- A

Policy Manager]Besource Manager
Base

Activity/Resource
Schema

Resource
Base

Figure 1: Architecture

Upon receiving a resource query, the query processor dispatches the query to the policy manager for policy
enforcement. The policy manager first rewrites the initial query based on gualification policies and
generates a list of new queries. Each of the new queries is then rewritten, based on requirement policies,
into an enhanced query. The enhanced new queries are finally sent to the resource manager for resource

retrieval.

In the cases where none of the requested resources is available, the initial query is re-sent to the policy
manager which, based on substitution policies, generates alternatives in the form of queries. Each of the
alternative queries is treated as a new query, therefore has to go through both gualification and requirement
policy based rewritings. Then, the policy manager once again sends a list of resource queries to the

resource manager.

If no relevant resources are found against the rewritten alternative queries, notify the user of the failure.

Bear in mind that substitution policies should not be used transitively.

2.2 Resource and Activity Models

A role is intended to denote a set of capabilities, its extension is a set of resources sharing the same
capabilities. In this regard, a role can be seen as a resource type. The resource hicrarchy shows resources

organized into roles whilst the activity hierarchy describes the classification of activity types.

Resource Activity

P N T~

M t Engineeri
Unit Employee Hardware Software anagemen gmeering
Engineer Adm Computer Peripheral Decision Organization Design Programming
Programmer Analyst Manager Secretary Approval Printing
Resource Hierarchy Activity Hierarchy

Figure 2: Resource and Activity Classifications
Figure 2 shows an example of resource and activity hierarchies.

A resource type as well as an activity type is described with a set of attributes, and all the attributes of a

parent type are inherited by its child types.

In addition to the resource classification, the resource manager holds relationships among different types of

Belongs
To

resources.

Resource

Figure 3: Entity-Relationship Model of Resources

Two possible relationships between resources are exemplified in Figure 3. Note that, like attributes,

relationships are inherited from parent resources to child resources.

Views may be created on relationships to facilitate query expressions. For example, ReportsTo(Emp, Mgr)
is defined as a join between BelongsTo(Employee, Unit) and Manages(Manager, Unit) on the common

attribute Unit.

2.3 Resource Query Language

Users can use the resource query language (RQL) to submit resource requests to the resource manager. The

language is composed of SQL Select statements augmented with activity specifications.

Select Contactlnfo

From Engineer

'Where Location = ‘PA’

[For Programming

With NumberOfLines = 35000 And Location = ‘Mexico’

Figure 4: Initial RQL Query

The query in Figure 4 requests ContactInfo of Engineer located in ‘PA’, for activity Programming of

35,000 line code and of location ‘Mexico’.

Since a resource request is always made upon a known activity, the activity can and should be fully

described; namely, each attribute of the activity is to be specified.

3 Policy Model and Language

Three types of policies are considered: qualification policies, requirement policies and substitution policies.

3.1 Qualification Policies

A qualification policy states a type of resources is qualified to do a type of activities.

Qualify Programmer
IFor Engineering

Figure 5: A Qualification Policy

The policy in Figure 5 states the resource type Programmer can do the activity type Engineering. Since
resources and activities are partially ordered, we allow qualification policies to be inherited from parent
resources or activities to their children. Consider a general qualification policy “Qualify R for A”, what this
policy really means is any sub-type resource of R (including R itself) is qualified to do any sub-type

activity of A (including A itself).

All qualification policies in the policy base are Or-related, and they obey the Closed World Assumption
(CWA). Namely, if the policy in Figure 5 is the only policy in the policy base, we may assume no resource

types other than Programmer can do activity Engineering.

3.2 Requirement Policies

A requirement policy states that if a resource is chosen to carry out an activity with specified
characteristics, the resource must satisfy certain conditions. Therefore, it expresses a necessary condition

for a resource type and an activity type. All requirement policies in the policy base are And-related.

Here are examples of requirement policies:

Require Programmer [Require Employee

'Where Experience > 5 \Where Language = ‘Spanish’
For Programming [For Activity

With NumberOfLines > 10000 With Location = ‘Mexico’

Figure 6: Requirement Policies

The first policy in Figure 6 states that if a Programmer is chosen to carry out activity Programming of

more than 10,000 line code, it is required that the Programmer have more than 5 year experience.

Given that both the set of resources and the set of activities are partially ordered, the scope of a requirement
policy can stretch over resources and activities which are sub-types of the resource and the activity
explicitly mentioned in the policy. For example, the second policy in Figure 6 requires the Employee be
Spanish speaking if (s)he is engaged in activity Activiry located in Mexico. Since both Employee and
Activity have sub-types in their respective hierarchies (Figure 2), the policy is actually applicable to any
pair of resource and activity as long as the resource is a sub-type of Employee (including Employee itself)
and the activity is a sub-type of Activity (including Activity itself). This gives a great deal of flexibility to

expressing requirement policies.

The syntax of a general requirement policy is as follows:

Require R
'Where <Where>
IFor A

With <With>

Figure 7: General Requirement Policy

There, R is a resource type and A is an activity type. <Where> is a SQL where clause which can eventually
include nested SQL select statements. <With> is a restricted form of SQL where clause in which no nested

SQL statements are allowed.

Some more complex policy examples follow,

equire Manager
Where ID =(
equire Manager Select Mgr

Where ID =(From ReportsTo

Select Mgr Where level = 2

From ReportsTo Start with Emp = [Requester]

Where Emp = [Requester] Connect by Prior Mgr = Emp

))

[For Approval [For Approval
With Amount < 1000 With Amount > 1000 And Amount < 5000

Figure 8: Complex Requirement Policies

Both policies in Figure 8 relate resource Manager to activity Approval. The first states that if the amount
requested for approval is less than $1,000, the authorizer should be the manager of the requester. The
second policy (a hierarchical sub-query is used) requires that the authorizer be the manager’s manager if

the requested amount is greater than $1,000 and less than $5,000. Two points are worth mentioning,
1. Nested SQL statement can be used to construct more complex selection criteria.

2. Autributes of the activity can be referenced in constructing selection criteria. To distinguish an attribute
of the activity from that of the resource, the former is enclosed between [and]. In the examples of

Figure 8, Requester is an attribute of activity Approval.

3.3 Substitution Policies

A substitution policy is composed of three elements: a substituting resource, a substituted resource and an
activity; each eventually augmented with descriptions. It states that the substituting resource can replace the
substituted resource in the unavailability of the latter, to carry out the activity. Multiple substitution policies

are Or-related.

Substitute Engineer

'Where Location = ‘PA’

By Engineer

'Where Location = ‘Cupertino’
IFor Programming

\With NumberOfLines < 50000

Figure 9: A Substitution Policy

The policy in Figure 9 states that Engineers in PA, in their unavailability, can be replaced by engineers in

Cupertino to carry out activity Programming of less than 50,000 line code.

Similar to the requirement policy, the scope of a substitution policy can stretch over resources and activities
which are sub-types of the substituted resource and the activity mentioned in the policy. Therefore, the
policy in Figure 9 may eventually be applicable to a query looking for a Programmer for activity

Programming.

4 Query Rewriting

Three types of policies imply that a RQL query may go through three different stages of query rewritings
under different circumstances. In general, any RQL query is automatically submitted for rewritings based
on qualification policies and relevant requirement policies (in the order). In the cases where no available
resources are found, the initial query is rewritten based on relevant substitution policies. The three

rewritings are discussed below.

4.1 Rewriting Based on Qualification Policies

This query rewriting uses qualification policies to adjust the initial query. The outcome could be a list of

queries.

Consider the RQL query in Figure 4, which looks for an Engineer for activity Programming. Assume the
only qualification policy is the one in Figure 5; namely, among the three sub-types Programmer, Analyst
and Engineer of Engineer, only Programmer can carry out the super-type activity Engineering of

Programming. Therefore, the initial RQL query is rewritten as:

10

Select ContactInfo

IFrom Programmer

\Where Location = ‘PA’

[For Programming

With NumberOfLines = 35000 And Location = ‘Mexico’

Figure 10: Rewriting Based on Qualification Policies
where Engineer is replaced by Programmer.

In general, given a RQL query looking for a resource R for an activity A, R is replaced by each of its sub-
types (could be R itself) which, according to the qualification policies, can carry out one of the super-type
activities of A (could be A itself too). If none of the sub-types of R can be used to carry out any of the

super-type activities of A, the empty set is returned.
Two points are worth mentioning:
1 The qualification policy based rewriting generates a list of resource queries.

2 A resource mentioned in the initial query implies all the sub-type resources. In the query of Figure
4, the intention is to retrieve either an engineer or a programmer or an analyst to do the specified
job. In contrast, a resource mentioned in each of the rewritten queries excludes its proper sub-type

resources.

4.2 Rewriting Based on Requirement Policies

This query rewriting consists of retrieving all requirement policies applicable (o the RQL query, appending
additional selection criteria (where clauses of the requirement policies) imposed by each of these

requirement policies to the where clause of the query. The outcome of this rewriting is an enhanced query.

As discussed in 3.2, a requirement policy involves a resource type and an activity type. A policy is said to

be applicable or relevant to a RQL query, if,

1 the resource in the policy is a super-type of the resource in the query; and,
2 the activity in the policy is a super-type of the activity in the query; and,
3 the activity specification in the query falls within the activity range of the policy.

Note that super-types of a type discussed above include the type itself.

11

The RQL query in Figure 10 requests resource Programmer for activity Programming. The first policy in
Figure 6 involves Programmer and Programming, so it might be applicable to the query. To actually apply
the policy, one has to check if the activity specification of the query fits into the activity ranges of the
policy. The specification of the query includes “NumberOfLines = 35000 which falls within the range
“NumberOfLines > 10000” of the policy, so “Experience > 5" will be added as a new criterion to enforce

the policy.

The second policy in Figure 6 involves resource Employee and activity Activity. Since Employee is a super-
type of Programmer and Activity is a super-type of Programming, this policy could be applied to the query.
Because the activity specification of the query matches the activity of the policy, “Language = Spanish” is

added as another selection criterion.

Thus the rewritten query is:

Select ContactInfo

[From Programmer

\Where Location = ‘PA’ And

Experience > 5 And Language = ‘Spanish’

IFor Programming

With NumberOfLines = 35000 And Location = ‘Mexico’

Figure 11: Rewriting Based on Requirement Policy

The last two selection criteria in the where clause in Figure 11 are derived from applying policies on the

activity specification.

4.3 Rewriting Based on Substitution Policies

This query rewriting consists of finding all substitution policies applicable to the RQL query, then
substituting the resource (together with its specification, namely, the from and where clauses of the query.)

based on each of these policies. So, the outcome of this rewriting could be a list of queries.

As discussed in 3.3, a substitution policy involves a substituted resource, a substituting resource and an

activity. A substitution policy is said to be applicable or relevant to a RQL query, if,

1 the substituted resource in the policy has at least one common sub-type with the resource in the

query'; and,

' Keep in mind that a resource type mentioned in the initial query implies all the sub-type resources.

12

2 the resource range in the query intersects with the resource range in the policy; and,
3 the activity in the policy is a super-type of the activity in the query; and,

4 the activity specification in the query falls within the activity range in the policy.
Note that super-types of a type discussed above include the type itself.

Consider now rewriting the initial query (Figure 4) based on substitution policies. The initial query
involves resource Engineer and activity Programming; the substitution policy in Figure 9 has Engineer as

the substituted resource and Programming as the activity, so it might be applicable to the query.

Like in the case of requirement policies, to actually apply the policy, one has to check if the specifications
of the activity and resource in the query fit into the ranges of the activity and the substituted resource in the
policy. The specification of the query includes “NumberOfLines = 35000 which falls within the range
“NumberOfLines < 50000 of the policy, also the location of requested Engineer being ‘PA’ which
matches the substituted resource in the policy. Consequently, the substitution policy in Figure 9 turns out to

be relevant to the initial RQL query.

Thus the rewritten query is:

Select ContactInfo

From Engineer

(Where Location = ‘Cupertino’

IFor Programming

With NumberOfLines = 35000 And Location = ‘Mexico’

Figure 12: Rewriting Based on Substitution Policy

5 Policy Management

Qualification policies basically deal with relationships among resource and activity types, they can

therefore be adequately managed in a 3-column table of schema (PID, Resource, Activity).

We are primarily concerned about managing requirement and substitution policies. This consists of

representing and efficiently retrieving relevant policies for a given query.

Recall that a requirement policy is relevant to a RQL query if the resource in the policy is a super-type of
the resource in the query; the activity in the policy is a super-type of the activity in the query; and the

activity specification in the query falls within the activity range of the policy.

13

Recall that a substitution policy is relevant to a RQL query if the substituted resource in the policy has ar
least one common sub-type with the resource in the query; the resource range in the query infersects with
the resource range in the policy; the activity in the policy is a super-type of the activity in the query; and the

activity specification in the query falls within the activity range in the policy.

Managing either of the two types of policies needs to represent ranges (of resources or activities) in such a
way that range comparisons can be carried out efficiently. Given the similarities of requirement policies
and substitution policies in terms of management, we only deal with requirement policies in the remainder

of this section.

5.1 Policy Representation

In a naive approach, requirement policies are represented in a 4-column table where each column
corresponds to a component of a policy. This works fine with string-match, as is the case with activity or
resource types; but is not adequate for range comparisons. A better mechanism ought to be investigated for
the activity range representation. Since an activity range is a Boolean expression involving activity

attributes, the problem therefore becomes how to represent Boolean expressions in a relational data model.

We first normalize a Boolean expression into a disjunctive normal form, then split the requirement policy
into several ones, each holding a conjunctive component in the with clause. That is, <A, R, 1, V 1,
WhereClause>" is divided into <A, R, r,, WhereClause> and <A, R, 1,, WhereClause>. Consequently, we
only need to consider representing requirement policies with conjunctive expressions in the with clause.
Because predicates involved in the with clause are of the form: (attribute op value), where op is among (<,
<, =, >, 2), negative predicates can be represented by positive ones by reversing the inequality for the cases
of inequalities, or replacing —(attribute = value) by (attribute > value) V (attribute < value) for the cases
of equalities. By grouping together predicates involving the same attribute, one can realize that the with
clause can be represented as a set of intervals, each corresponding to an attribute of the activity. Finally,
since we deal with finite data domains, all open intervals on a finite domain can be represented with closed
ones; so only closed intervals are considered. By convention, we use ‘“>" to denote “greater than or equal

to” and “<” to “less than or equal to”.

The above analysis suggests us to store an activity range as a set of intervals rather than a string.

Furthermore, since the number of intervals may vary from one activity range to another, one would have to

* A requirement policy is denoted as a quadruple <A, R, r, WhereClause> where A is the activity, R is the

resource, r is the activity range and WhereClause is the Where clause.

14

allocate a maximum number of columns to represent activity ranges if one wanted to use one table to store
all requirement policies. This approach obviously is not optimal because of the potentially low rate of space

occupancy.

We propose to use two tables to represent requirement policies. Precisely, a requirement policy is split into
two parts which are associated through a unique policy ID (PID). One table holds the correspondences
among the activity type, resource type and Where clause while the other table manages the relationships
between the set of intervals and the PID. The first table has the schema Policies(PID: Number; Activity:
String; Resource: String; NumberOfIntervals: Number; WhereClause: String) whereas the second
Filter(PID: Number; Attribute: String; LowBound: String; UpperBound: String®).

Given the policy in Figure 7, a tuple is inserted into table Policies while a number of tuples are added to
table Filter. That is, (pid, A, R, n, <Where>) is added to table Policies, where pid is an automatically
generated integer uniquely identifying a policy, A and R are the activity and resource involved in the

policy, n is the number of intervals in <With>.

n tuples are inserted to table Filter. In general, if an attribute a is mentioned in <With> and ranged within

an interval [lower, upper], tuple (a, pid, lower, upper) is added to table Filter.

For example, to represent the first requirement policy in Figure 6, (100, ‘Programming’, ‘Programmer’, 1,
‘Experience > 5°) is inserted to table Policies and (100, ‘NumberOfLines’, 10000, Max*) is inserted to table
Filter, supposing 100 is the automatically generated PID. And, to represent the second requirement policy
in Figure 6, (200, ‘Activity’, ‘Employee’, 1, ‘Language = Spanish’) is inserted to table Policies and (200,
‘Location’, ‘Mexico’, ‘Mexico’) is inserted to table Filter, where 200 is the automatically generated PID.

5.2 Relevant Policy Retrieval

Given a RQL query, assume the activity specification (With clause) is: (a, = x;) And (a, = X,) And ... And
(am = Xm). To retrieve relevant policies, one needs to work on table Policies to figure out policies involving

activities and resources that are super-types of the activity and resource of the query; in the meantime,

? Note that attributes can have different data types, and different data types have different ordering
schemes. In the implementation, intervals of different data types are stored in different tables. However, for

the ease of understanding, we here only consider intervals of the string type.

* Max denotes the maximum value of the concerned attribute type.

15

search applicable policies in table Filter against the activity specification of the query. In doing so, two

views are created.

Create View Relevant_Policies(PID, NumberOfIntervals, WhereClause)

IAs

Select PID, NumberOfIntervals, WhereClause

From Policies

Where Policies.Activity in Ancestor(A) And
Policies.Resource in Ancestor(R)

Figure 13: View on Policies

In Figure 13, Ancestor(A) denotes ancestors of A in the activity hierarchy whereas Ancestor(R) the set of
ancestors of R in the resource hierarchy. If both hierarchies are not too “big” (which is most likely the case
in practice), the inclusion check can be implemented as a group of disjunctively related equality
comparisons (between Policies.Activity and each member of Ancestor(A); or between Policies.Resource

and each member of Ancestor(R)).

Since attributes Activity and Resource are always mentioned at the same in the query (Figure 13), for better

performance, we may create a concatenated index on attributes Activity and Resource.

The query in Figure 14 intends to count, for each policy, the number of intervals that enclose an attribute

value of the activity specification.

ICreate View Relevant_Filter(PID, NumberOfIntervals)

|As

Select PID, Count(*)

From Filter

Where (Attribute = a; And LowerBound < x; And x; < UpperBound)
Or
(Attribute = a, And LowerBound < x, And x, < UpperBound)
Or

(Attribute = a,, And LowerBound < x,, And x,, < UpperBound)
Group by PID

Figure 14: View on Filter

Similarly, since attributes attribute, LowerBound and UpperBound are always mentioned at the same in the
query (Figure 14), for better performance, we may create a concatenated index on attributes attribute,
LowerBound and UpperBound.

The query in Figure 15 allows one to retrieve additional selection criteria for the RQL query.

16

Select WhereClause

IFrom Relevant_Policies, Relevant_Filter

'Where Relevant_Policies.PID = Relevant_ Filter.PID And
Relevant_Policies.NumberOfIntervals =

Relevant_ Filter. NumberOfIntervals

'Union

Select WhereClause

IFrom Relevant_Policies

‘Where Relevant_Policies.NumberOfIntervals = 0

Figure 15: Retrieval of Additional Selection Criteria

Since a requirement policy with empty with clause has 0 occurrence in table Filter; so as long as the
resource of the policy is a parent resource of the requested resource and the activity of the policy is a parent
activity of the request activity, the policy becomes relevant. Hence, retrieval of relevant policies has to take

into account both “normal” and “less normal” cases, as was done in Figure 15.

(Policies) (Filter)

PID | Activity | Resource| NumberOfIntervals| WhereClause PID | Attribute | LowerBound | UpperBound

Retain policies involving an For each policy, count the number
— ancestor acitivy of A and an of intervals that enclose one -
(Relevant_Policies) Y ancestor resource of R. attribute value of With clause. y (Relevant_Filter

PID NumberOfIntervals WhereClause PID NumberOfIntervals

Retrieve policies that satisfy
constraints on activity type,
resource type and activity
specification.

WhereClause

Figure 16: Retrieval of Relevant Policies

Figure 16 summarizes the operation flow for retrieving relevant requirement policies for a given RQL

query.

17

6 Analytical Evaluation

As discussed in 5.2, a concatenated index is created on both tables (Policies and Filter) representing
requirement policies, so several alternative execution plans are possible for the query optimizer to process
the query intended to retrieve relevant policies. To get a sense of the basis the optimizer makes choices on,
and how they are impacted by different policy settings, we evaluation the selectivity rates of both views
defined in 5.2 (Figure 13 and Figure 14).

Let’s first define the parameters.

1Al Number of activity types.
IRI: Number of resource types.
q: Average number of activity types a resource type is qualified for. This is actually the

average number of qualification policies a resource type is involved in.

c Average number of different “cases” per pair (resource, activity). This is the average

number of requirement policies sharing the same resource and activity types.
N: Number of requirement policies.
I Average number of intervals per activity range.

The number of entries in table Policies is N = IRl x q X ¢. If both the activity and resource hierarchies form
a complete binary tree, the average number of predecessors of a resource type is loglRl5 and the average

number of predecessors of an activity type is loglAl. So, the selectivity rate on table Policies is:

(logl A)x(ogIR l)xc _ (loglAl)x(logIR1)
IR Ixgxc IR Ixq

Selectivitypojicies =

The number of entries in table Filter is [RI X q X ¢ X i. If among all the requirement policies an activity type
participates in, the ranges of the activity type are the same for different resource types, and the ranges are

pair-wise disjoint; the selectivity rate on table Filter would be:

gxi _ 1
IRIxqxcxi IRIxc

Selectivityge, =

5 In a complete binary tree of height n, the average height is:

nx2® 4 @-Dx2® D 4 ol Ca-px2® 4
o0 40 50 YGRS

=(m-1)

18

We are interested in the two substantial factors that have impact on the selectivity. The first factor,
measured by parameter q, describes how interactive it is between the set of activities and the set of
resources. The second factor, measured by parameter ¢, describes how fragmented an activity type is in

dealing with one particular resource type. Let’s now consider the cases where N = 2'2, |Al = [R| = 25,

Activity Fragmentation (c)
0 10 20 30 40 50 60 70
100% Il 1 L 1 1

Selectivity on Relevant_Policies

10%

1%

Selectivity Rates

0% 4 Selectivity on Relevant_Filter

0% -

Figure 17: Selectivity Evaluation

Figure 17 depicts the selectivity trends on function of the activity fragmentation, i.e., the average number of
different “cases” per pair (resource, activity). When N and IR| are fixed, q is anti-proportional to ¢. One can
observe that the more an activity gets fragmented (c increases), the higher is the selectivity on
Relevant_Filter (the selectivity rate getting lower) and the lower is the selectivity on Relevant_Policies.

Also, view Relevant_Filter tends to be more selective than Relevant_Policies, in general.

These observations provide some guidelines if one chooses to implement an in-memory query processor

not leveraging any commercial in-disk DBMS.

7 Conclusion

We studied several issues related to resource policies in Workflow Systems. A policy language was
proposed allowing users to specify policies of different types. To enforce the policy, a resource query is
first rewritten based on relevant policies, before submitted to the resource manager for actual retrieval. The
originality of the present work is on the resource policy model, the policy enforcement mechanism and
policy management techniques including relational representation of, and efficient access to, a large policy
set. It seems that the interval-based representation proposed in the paper provides a general framework for

effective storage and efficient retrieval of large Boolean expression sets.

19

A prototype was implemented in Java on NT 4.0, with experimental policies managed in an Oracle
database. An alternative implementation would load policies into the main memory (periodically or at start-
up time), an in-memory query optimizer ought to be devised in this case. Comparisons of pros/cons of these

two implementations are worth further investigating.

References

[1] M. Blaze, J. Feigenbaum and J. Lacy, “Decentralized Trust Management”, Proc. of IEEE Symposium
on Security and Privacy, Oakland, CA, May 1996.

[2] C. Bufler, “Policy resolution in Workflow Management Systems”, Digital Technical Journal, Vol. 6,
No. 4, 1994,

[3] C. Bufler and S. Jablonski, “Policy Resolution for Workflow Management Systems”, Proc. Of the
Hawaii International Conference on System Sciences, Maui, Hawaii, January 1996.

[4] Desktop Management Task Force, “Common Interface Model (CIM) Version 1.0 (Draft)”’, December
1996.

[5] J. Davis, W. Du and M. Shan, “OpenPM: An Enterprise Process Management System”, JEEE Data
Engineering Bulletin, 1995.

[6] W. Du, G. Eddy and M.-C. Shan, “Distributed Resource Management in Workflow Environments”,
Proc. of Database Systems for Advanced Applications (DASFAA), Melbourne, Australia, April, 1997.

[71 R. Grimm, T. Hetschold, “Security Policies in OSI-Management Experience from the DeTeBerkom
Project BMSec ”, Computer Networks and ISDN Systems, Vol. 28, 1996.

[8] ISO-ANSI working draft: Database language SQL3, 1994, X3H2/94/080 and SOU/003.

[9] M. Sloman, “Policy Driven Management for Distributed Systems”, Journal of Network and System
Management, Vol. 2, Part 4, 1994,

[10]J. Widom and S. Ceri, “Active Database Systems: Triggers and Rules for Advanced Database
Processing”, Morgan kaufmann Publishers, Inc., San Francisco, California, 1997.

[11] Workflow Management Coalition, “The Workflow Reference Model”,
http://www.aiim.org/wfmc/DOCS/refmodel/rmv1-16.html.

[12]J. D. Ullman, “Principles of Databases and Knowledge-Based Systems”, Vol. 1, 2, Computer Science
Press, Maryland, 1998.

Appendix

Syntax of Resource Query Language (RQL)

<statement> = <select> <for> with <attribute_value_list>
<select> = select <attribute> from <resource> <where>
<where> u= <empty> | where <ranges>

<ranges> RE <range> | <range> and <ranges>

20

<range> n= <attribute> <op> <value>
<op> = >l<I=
<for> = for <activity>

<attribute_value_list> <attribute_value> | <attribute_value> and <attribute_value_list>

<attribute> = <value>

I

<attribute_value>

Syntax of Policy Language (PL)

<statement> = <qualify> | <require>| <substitute>

<qualify> = qualify <resource> <for>

<require> n= require <resource> <where*>® <for> <with>

<substitute> n= substitute <resource> <where> by <resource> <where> <for> <with>
<for> = for <activity>

<where> n= <empty> | where <ranges>

<with> n= <empty> | with <ranges>

<ranges> u= <range> | <range> and <ranges>

<range> n= <attribute> <op> <value>

<op> = >l<|=

¢ <where*> is the where clause, as defined in [8].

21

