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Abstract

Recent years have seen the introduction of many commercial work�ow management
systems� While there are similarities between the languages of various of these systems�
there are also signi�cant di�erences� One particular area of di�erences is caused by the fact
that di�erent systems impose di�erent syntactic restrictions� For example� some work�ow
management systems do not allow the use of arbitrary loops� In such cases� business an�
alysts have to choose between either conforming to the language in their speci�cations or
transforming these speci�cations afterwards� The latter option is preferable as this allows
for a separation of concerns� In this paper we investigate to what extent such transforma�
tions are possible in the context of various syntactical restrictions �the most restrictive of
which will be referred to as structured work�ows	� We also provide a deep insight into the
consequences� particularly in terms of expressive power� of imposing such restrictions�

� Introduction

Recent years have seen the proliferation of work�ow management systems developed for dif�
ferent types of work�ows and based on di�erent paradigms �see e�g� �Aal�	
 EN��
 EKR��

GHS��
 Kou��
 Law�

 Sch�	
 DKTS��
 Wor�	��� Despite this interest in work�ow manage�
ment
 both from academia and industry
 there is still little consensus about its conceptual and
formal foundations �see e�g� �JB�	���

While there are similarities between the languages of various commercially available work�ow
management systems
 there are also many di�erences� However
 it is often not clear whether
these di�erences are fundamental in nature� For example
 as di�erent systems impose di�erent
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tributed Enterprise Management System with Con�gurable Work�ow Support� between QUT and Mincom�
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syntactic restrictions
 one may wonder whether this a�ects the expressive power of the resulting
languages� In addition to that
 such variations result in business analysts being confronted with
the question as to whether to conform to the target language right away when they specify
their work�ows
 or to transform their speci�cations in a later stage�

In this paper focus is on syntactic variations in work�ow speci�cation languages� Di�erent
work�ow management systems impose di�erent syntactical restrictions� The most restrictive
types of work�ows will be referred to as structured work�ows� Systems such as SAP R�� and
Filenet Visual Work�o allow for the speci�cation of structured work�ows only� While enforcing
restrictions may have certain bene�ts �e�g� veri�cation and implementation become easier�
 the
price that may have to be paid is that the resulting language is more di�cult to use and has
less expressive power�

In this paper
 it will be shown that some syntactic restrictions will lead to a reduction of
expressive power of the language involved
 while other restrictions are of a less serious nature
and can be overcome by the introduction of equivalence preserving transformation rules� It
will be also shown that even though for certain work�ow models it is possible to transform
them to equivalent structured forms
 the resulting models are less suitable than the original
ones� Nevertheless
 the automation of such rules could potentially lead to tools giving business
analysts greater freedom in work�ow speci�cation without compromising their realisability in
terms of commercially available �and preferred� work�ow management systems�

The paper is organised as follows� In section �
 basic terminology and de�nitions are introduced�
In section �
 the issue of work�ow equivalence will be addressed� In section �
 a number of
equivalence preserving transformations will be introduced and limitations to removing causes
of �unstructuredness� will be investigated� Section � will focus speci�cally on restrictions on
loops� Finally
 in section 	 the conclusions are presented and some topics for further research
identi�ed�

� Structured Work�ows� De�nitions

In this section the notion of a structured work�ow is formally de�ned and some elementary
properties stated� First however
 we need to establish a working de�nition of the syntax of
a work�ow in general� Work�ows as used in this paper will employ concepts used in most
commercial work�ow management systems�

The following de�nition provides the syntax of arbitrary work�ows and restricts itself to control
�ow aspects�

De�nition ���

Syntactically� a work�ow W consists of a set of process elements P� and a transition

relation Trans � P � P between process elements� The set of process elements can be

further divided into a set of or�joins Oj� a set of or�splits Os� a set of and�joins Aj� a

set of and�splits As� and a set of activities A�

The outgoing transitions of or�splits may have predicates assigned to them through a

function Pred�Trans��Os�P�� Predicate� Activities may have a name assigned to them

through the partial function Name�A� Name� Activities without names are referred to
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as null activities� And�joins and or�joins should have an outdegree of at most one� and�

splits and or�splits should have an indegree of at most one� and all activities have an

indegree and outdegree of at most one� Finally� we will call process elements with an

indegree of zero initial items �I � P� and conversely� process elements with an outdegree

of zero � �nal items �F � P��

�

Although the graphical notation used for representing work�ows is irrelevant in terms of the
results presented in this paper
 we have to agree on one in order to provide examples to
illustrate our arguments� Process elements will be represented by large circles� or�joins and
or�splits will correspond to small
 white circles
 while and�joins and and�splits will correspond
to small
 shaded circles �the indegree and outdegree will always make it clear whether we are
dealing with a join or a split��

There are many examples of languages that support the speci�cation of arbitrary work�ows

e�g� Sta�ware�
 Forte Conductor� and Verve WorkFlow��

Before we continue
 the issue of semantics needs to be addressed
 as the above de�nition focuses
on syntax only� As the concepts used are well�known
 we refer the reader to e�g� �HK��� where a
semantics through a mapping to elementary Petri�nets is given� This mapping is straightforward
and will not be heavily relied upon in the rest of this paper� To avoid possible ambiguities
however
 the following provides a summary of the essentials of the assumed semantics�

� All initial activities are started concurrently�

� Any activity that does not have an outgoing transition is a potential �nal task� The pro�
cess does not automatically terminate when a �nal task is reached
 rather
 it terminates
when �there�s nothing else to do�� Naturally
 in case of only one concurrent execution
thread
 completion of a �nal task will result in termination of the process�

� Processes may deadlock �for example when an or�split is followed by an and�join�� In
this case the process will not terminate �sometimes the notions �successful termination�
and �unsuccessful termination� are used in this context to distinguish between normal
termination and deadlock��

� Or�splits are assumed to have the semantics of the exclusive or�split construct� This
means that predicates are assigned in such a way that only one of them can evaluate to
true
 or
 in case two or more of them evaluate to true
 the work�ow engine will ensure
that only one path is actually taken� Note that the above assumption is without any loss
of generality
 as general or�splits can be modelled straightforwardly by a combination of
and�splits and exclusive or�splits�

� In this paper we are not concerned with the particulars of the implementation of the
data perspective� How predicates are evaluated is not relevant for the presented results�

�www�sta�ware�com
�www�forte�com
�www�verveinc�com
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� An and�join will wait for all preceding activities to be �nished before the subsequent
activity can be started� An or�join will wait for any preceding activity to be �nished
before the subsequent activity will be started� The subsequent activity will be started
for every preceding activity that �nishes� This might be several times if one or several
preceding activities �nish several times�
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Figure �� Petri Net mapping of the simple work�ow speci�cation

An example of the mapping of a simple work�ow to a Petri�net is illustrated in �gure �� Note
the need for the auxiliary non�labelled places for the representation of the and�join� It should
be remarked that the actual details of the semantics of some constructs may vary slightly
from product to product� We abstract from these variations since they do not compromise the
presented results in any respect�

A structured work�ow is a work�ow that is syntactically restricted in a number of ways�
Intuitively a structured work�ow is a work�ow where each or�split has a corresponding or�
join and each and�split has a corresponding and�join� These restrictions will guarantee certain
important properties shown later in the paper and in some cases correspond to restrictions
imposed by commercial work�ow management systems�

De�nition ���

A structured work�ow model �SWM� is inductively de�ned as follows�

	� A work�ow consisting of a single activity is a SWM� This activity is both initial
and �nal�


� Let X and Y be SWMs� The concatenation of these work�ows� where the �nal

activity of X has a transition to the initial activity of Y � then also is a SWM� The

initial activity of this SWM is the initial activity of X and its �nal activity is the

�nal activity of Y �

�� Let X�� � � � �Xn be SWMs and let j be an or�join and s an or�split� The work�ow

with as initial activity s and �nal activity j and transitions between s and the initial
activities of Xi� and between the �nal activities of Xi and j� is then also a SWM�

Predicates can be assigned to the outgoing transitions of s� The initial activity of

this SWM is s and its �nal activity is j�
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�� Let X�� � � � �Xn be SWMs and let j be an and�join and s an and�split� The work�ow

with as initial activity s and �nal activity j and transitions between s and the initial

activities of Xi� and between the �nal activities of Xi and j� is then also a SWM�

The initial activity of this SWM is s and its �nal activity is j�


� Let X and Y be SWMs and let j be an or�join and s an or�split� The work�ow with

as initial activity j and as �nal activity s and with transitions between j and the

initial activity of X� between the �nal activity of X and s� between s and the initial

activity of Y � and between the �nal activity of Y and j� is then also a SWM� The
initial activity of this SWM is j and its �nal activity is s�

�

The above de�nition is illustrated in �gure �� Note that the last clause of the de�nition would
correspond to a classic WHILE�loop if X is a null activity and to a classic REPEAT�UNTIL�
loop if Y is a null activity� If n � �
 the second clause corresponds to a classic IF�THEN�ELSE�

Sequence

Structured loop

Parallel structure

Decision structure

X Y

Y

X

Y

X

Y

X

Figure �� Illustration of structured work�ow models

As is clear from de�nition ���
 every structured work�ow model is also an arbitrary work�ow
model� Hence
 the semantics of the constructs used in structured models is the same as for
arbitrary models� The reader may also note that every structured work�ow model will always
have one initial and one �nal task� All commercial WfMSs known to the authors allow for
the speci�cation of work�ow models that are equivalent to structured models as de�ned in
de�nition ���� Some of these WfMSs do not allow for the speci�cation of arbitrary models
though and they impose certain levels of structuredness by means of syntactical restrictions
typically implemented in the graphical process designer�

The most restricted work�ow modelling languages known to the authors with respect to im�
posing structuredness are the languages of FileNet�s Visual WorkFlo� �VW� and SAP R��
Work�ow �KT���� In both languages it is possible to design structured models only� These
models resemble the de�nition provided earlier very closely with some minor exceptions such

�www��lenet�com
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as that in VW the loops can only be of the form �WHILE p DO X�� In SAP R�� Work�ow no
loops are allowed to be modelled in a direct way� An example of syntactical restrictions in the
more general area of data and process modelling can be found in UML�s activity diagrams �see
e�g� �Fow�
�� where business modellers are forced to exclusively specify structured models�

The de�nition of SWMs guarantees these types of work�ows to have certain properties� Specif�
ically
 by the use of structural induction it can easily be shown that SWMs do not deadlock
�see �HK����� In addition to that
 in SWMs it is not possible to have multiple instances of
the same activity active at the same time� This situation is easily modelled in an arbitrary
work�ow if an and�split is followed by an or�join construct� Similarly
 an arbitrary work�ow
will deadlock if an or�split is followed by an and�join�

Since in the following sections we will regularly pay attention to arbitrary work�ow models
that do not deadlock and do not result in multiple instances
 for terminological convenience
we introduce the notion of well�behaved work�ows�

De�nition ���

A work�ow model is well�behaved if it can never lead to deadlock nor can it result in

multiple active instances of the same activity� �

Corollary ��� Every structured work�ow model is well�behaved�

Instead of requiring work�ows to be structured
 it is more common for work�ow languages
to impose restrictions on loops only� For example IBM MQSeries�Work�ow� and InCon�
cert �InC��� do not allow the explicit modelling of loops� Instead they have to be modelled by
the use of decomposition� This is equivalent to using a �REPEAT X UNTIL p� loop� In case
of MQSeries�Work�ow
 predicate p is speci�ed as the Exit Condition of the decomposition�

Hence
 in between arbitrary work�ow models and structured work�ow models
 we recognise a
third class of work�ow models
 referred to as restricted loop models�

De�nition ���

A restricted loop work�ow model �RLWFM� is inductively de�ned as follows�

	� An arbitrary work�ow model without cycles is an RLWFM�


� Let X and Y be RLWFMs with each one initial and one �nal node� Let j be an or�

join and s an or�split� The work�ow with as initial activity j and as �nal activity s

and with transitions between j and the initial activity of X� between the �nal activity

of X and s� between s and the initial activity of Y � and between the �nal activity of

Y and j� is then also a RLWFM�

�

Note that languages that support loops through decomposition are a subset of the class de�ned
by the above de�nition �in those cases
 essentially
 Y corresponds to the empty work�ow��
Naturally
 every SWF is an RLWFM and every RLWFM is an arbitrary work�ow model�

Example ��� Figure � illustrates the three di�erent classes of work�ows� �

�www�ibm�com	software
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Figure �� Three di�erent work�ow model classes

� Equivalence in the Context of Control Flow

As there exist work�ow languages that do not allow for the speci�cation of arbitrary work�ows

business analysts are confronted with the option to either restrict their speci�cations such that
they conform to the tool that is used or specify their work�ows freely and transform them to
the required language in a later stage� From the point of view of separation of concerns
 the
latter option is preferable� To support such a way of working it would be best to have a set
of transformations that could be applied to a work�ow speci�cation in order to transform it
to a structured work�ow in the sense of the previous section� Naturally
 these transformations
should not alter the semantics of the work�ows to which they are applied
 they should be
equivalence preserving� However
 this immediately raises the question as to what notion of
process equivalence is the most applicable in the context of work�ows �for an overview of
di�erent notions of process equivalence the reader is referred to �Gla�����

One of the most commonly used equivalence notions is that of bisimulation �see e�g� �Mil�����
The formal de�nition of bisimulation between two di�erent work�ow systems
 given the fact
that they would most likely use di�erent syntax and semantics
 would have to be de�ned using
some common formalism that can be applied to both systems� One of the most convenient
ways to do it is to de�ne bisimulation formally in terms of their Petri�net representation� That
immediately leads to the conclusion that weak bisimulation has to be considered since Petri�net
representations of work�ow models may use many
 internal
 non�labelled places�

In the context of work�ow processes with parallelism
 the notion of basic weak bisimulation
is not strong enough� Bisimulation is de�ned in terms of execution sequences
 i�e� in terms of
arbitrary interleaving� As such
 however
 bisimulation cannot distinguish between a concurrent
system and its sequential simulation� For that reason a stronger equivalence notion is needed�
Such a notion is provided in �BDKP��� where it is referred to as fully concurrent bisimulation�
Given the fact that the formal de�nition is relatively complex and the details are not particu�
larly useful for the purpose of this paper
 we will present fully concurrent bisimulation in the
context of work�ow speci�cation in terms of the bisimulation game �adapted from �Jan�����






�� There are two players
 Player A and Player B
 each of which having a work�ow model
speci�cation �Work�ow A and Work�ow B��

�� Player A starts the initial activities in his work�ow model speci�cation� Player B responds
by starting the initial activities in his work�ow model speci�cation �which should exactly
correspond to those of player A��

�� Player A may choose to �nish any of its activities and start a corresponding subsequent
activity� Player B responds accordingly by �nishing and starting an activity with the
same label �possibly performing some internal
 non�labeled
 steps �rst��

�� If Player B cannot imitate the move of Player A
 he looses� By imitating we mean that
at any point in time the same set of activities in work�ow B should be completed and
started as in work�ow A� Player B wins if he can terminate his work�ow once Player
A has terminated his work�ow� Similarly Player B wins if he can deadlock his work�ow
once Player A has deadlocked his work�ow� The case of an in�nite run of the game is
considered to be successful for Player B too�

If there is a strategy for defending player �Player B� to always prevent Player A from winning
then we say that work�ow B can simulate work�ow A� If the reverse applies as well �work�ow
A can simulate work�ow B� then we consider the two work�ow speci�cations to be equivalent�

The following �gure contains examples of several equivalent and non�equivalent work�ow spec�
i�cations�

A

B C B

AA

C

~a a

~a a

A B

C

A B

C C
Workflow A1 Workflow A2

Workflow B1 Workflow B2A

B C

A

B C

C B

Workflow C1 Workflow C2

A BC

~a a

A

C B

~a

a

a

~a

Workflow D1

Workflow D2

Figure �� Work�ow equivalence examples

�� Work�ows A� and A� are not equivalent� Note that after completing activity A in work�
�ow A� there is still a choice to be made whether to proceed with activity B or with
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activity C� In work�ow A� this option is not present anymore once activity A is com�
pleted�

�� Work�ows B� and B� are equivalent�

�� Work�ows C� and C� are not equivalent� In work�ow C� activities B and C can be
performed concurrently
 while in work�ow C� they cannot� Note that these two work�
�ows are equivalent according to the traditional notion of bisimulation �just not in fully
concurrent bisimulation��

�� Work�ows D� and D� are equivalent provided that activities A and B do not a�ect the
value of ��

� Transformation of Arbitrary Work�ow Models to SWMs

In this section transformations from arbitrary work�ow models to SWMs are studied and to
what extent such transformations are possible� All transformations presented in this section
assume that the work�ow patterns they operate on do not contain data dependencies between
decisions
 in other words for all intents and purposes all decisions can be treated as nondeter�
ministic� This assumption allows us to assume that all possible executions permitted by the
control �ow speci�cation are possible�

The organisation is as follows� First we concentrate on work�ows that do not contain paral�
lelism �to be more precise
 we consider work�ows that do not contain and�join and and�split
constructs�� Then we will concentrate on work�ows that do contain parallelism
 but do not have
any cycles� Then we will consider work�ow models with both loops and parallelism� Finally

we will comment on the suitability of the presented transformations�

��� Simple work�ows without parallelism

Work�ows that do not contain parallelism are simple models indeed� Their semantics is very
similar to elementary �ow charts that are commonly used for procedural program speci�cation�
The or�split corresponds to selection �if�then�else statement� while the activity corresponds to
an instruction in the �ow chart� It is well known that any unstructured �ow chart can be
transformed to a structured one� In this section we will revisit these transformation techniques
and present and analyse them in the context of work�ow models�

Following �Wil

� we will say that the process of reducing a work�ow model consists of replacing
each occurrence of a base model �i�e� one of the four shown in �gure �� within the work�ow
model by a single activity box� This is repeated until no further replacement is possible� A
process that can be reduced to a single activity box represents a structured work�ow model�
Each transformation of an irreducible work�ow model should allow us to reduce the model
further and in e�ect reduce the number of activities in the model�

The strong similarity of simple work�ow models and �ow diagrams suggests that if we do
not consider parallelism
 there are only four basic causes of unstructuredness �see e�g� �Wil
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� Entry into a decision structure

� Exit from a decision structure

� Entry into a loop structure

� Exit from a loop structure

Entry to any structure is modelled in a work�ow environment by an or�join construct� Simi�
larly
 an exit is modelled by an or�split� Once parallelism is introduced we will also consider
synchronised entry and parallel exit modelled by and�join and and�split constructs respectively�
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B C

E

F

D

a~a

b ~b

A

B C

F

D

a~a

~F

F

F:=b

F:=True

E

F

~F

Workflow A1 Workflow A2

Figure �� Exit from a decision structure

The �rst transformation �all transformations in this section are based on �Oul����
 depicted in
�gure �
 can be performed when transforming a diagram containing an exit from a decision
structure� It is important to observe that variable � is needed since activity D can potentially
change the value of � or
 if � is a complex expression
 it could change the value of one of
its components� This transformation is achieved through the use of auxiliary variables� It
should be noted that the models in �gure � �and in all the following �gures� are intended to
be fragments of work�ows
 rather than complete work�ows in themselves� The reader should
verify for themselves that both models in this �gure are indeed fully concurrent bisimulation
equivalent�

The transformations as depicted in �gure 	 are used when a work�ow model contains an
entry to a decision structure� Here work�ow B� is a transformation of B� achieved through
node duplication
 whereas work�ow B� is a transformation of B� achieved through the use of
auxiliary variables� Note that as we do not consider parallelism in this subsection
 activities A
and E can not run concurrently �so there must be an or�split preceding this partial work�ow
model��

The following two diagrams
 depicted in �gures 
 and �
 capture transformations to be used
when a model contains an entry to
 or an exit from a loop structure
 respectively�
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Figure 	� Entry into a decision structure
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Figure 
� Entry into a loop structure

Repeated application of the transformations discussed in this section can remove all forms
of unstructuredness from a work�ow� All unstructured work�ows without parallelism have an

E
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C
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Workflow D1 Workflow D2
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~FF
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Q ~Q F

~F

Figure �� Exit from a loop structure
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equivalent structured form� Finally
 it should be remarked that in some cases we have presented
alternative transformations �not using auxiliary variables� and in some cases we have not� In
later sections
 we will show that this has a reason� in the cases where no extra transformations
�not using auxiliary variables� are presented
 such transformations turn out not to exist�

��� Work�ows with parallelism but without loops

Addition of parallelism immediately introduces problems related to deadlock and multiple
instances� As noted in section �
 structured work�ow models never result in deadlock nor
multiple instances of the same activity at the same time� Hence the following lemma is obvious�

Lemma ��� Structured work�ow models are less expressive than arbitrary work�ow models�

This lemma immediately raises the question as to whether well�behaved work�ow models can
be transformed to structured work�ow models� As the next theorem shows
 the answer to this
question is negative�

Theorem ��� There are arbitrary
 well�behaved
 work�ow models that cannot be modelled
as structured work�ow models�

A

B C

D E

F

B

D

C

E

Figure �� Arbitrary work�ow and illustration of its essential causal dependencies

Proof�

Consider the work�ow fragment in �gure �� The �rst observation is that as activities
B and C are causally independent �that is
 they can be executed concurrently� they
have to be in di�erent branches of some parallel structure in a corresponding structured
work�ow� As activities C and E are causally dependent �E is always performed after C�
there must be a path from C to some activity named E� This activity has to be in the
same branch as C as it cannot be outside the parallel structure as that would make it
causally dependent on B� By applying similar reasoning
 an activity named D has to be
in the same branch of a parallel structure as B� Now we have that as C and D are in
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di�erent branches of a parallel structure they are causally independent� However
 in the
original model they are causally dependent� Contradiction� No corresponding structured
work�ow exists� �

To �nd out which work�ow models can be e�ectively transformed into SWMs
 let us concentrate
on the causes of unstructuredness that can occur when parallelism is added� If loops are not
taken into account
 these causes are�

� Entry to a decision structure

� Exit from a decision structure

� Entry to a parallel structure

� Exit from a parallel structure

� Synchronised entry to a decision structure

� Parallel exit from a decision structure

� Synchronised entry to a parallel structure

� Parallel exit from a parallel structure

In the remainder of this section we will concentrate on which of these structures can be trans�
formed to a structure model�

Entries and exits from decision structures are dealt with in section ��� and can obviously be
transformed to a structured model�

As a synchronised entry to a decision structure and an exit from a parallel structure leads to
a potential deadlock �i�e� there are instances of the model that will deadlock�
 it follows that
if the original work�ow contains any of these patterns
 it cannot be transformed into a SWM�

Parallel exits and synchronised entries to a parallel structure are dealt with in theorem ����
The reasoning of this theorem can be applied to any model that contains these patterns� Hence
such models
 even though they may be well�behaved
 cannot be transformed into SWMs�

Before analysing the two remaining structures let us de�ne a syntactical structure called an
overlapping structure� This structure has been previously introduced in the context of work�ow
reduction for veri�cation purposes in �SO���� A speci�c instance of it is shown in �gure ��� An
overlapping structure consists of an or�split followed by i instances of and�splits
 followed by
j instances of or�joins and �nally by an and�join� The structure of �gure �� has both i and j
degrees equal to two� The overlapping structure contains both an entry to a parallel structure
and a parallel exit from a decision structure and it never results in a deadlock� It is possible
to transform an overlapping structure into a SWM as shown in �gure ���

A thorough analysis of the causes of deadlock and multiple instances in work�ow models �see
e�g� �SO���� leads to the conclusion that work�ow models containing a parallel exit from a
decision or an entry to a parallel structure will cause a potential deadlock unless they form
a part of an overlapping structure or the exit path from the decision does not join the main
execution path�

Hence we conclude�
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Figure ��� Overlapping structure

� An entry to a parallel structure can cause a potential deadlock unless it is part of an
overlapping structure �in which case it can be transformed as shown��

� Similarly
 a parallel exit from a decision structure can cause a potential deadlock and
cannot be transformed into a SWM unless it is part of an overlapping structure or if
the exit path does not join the main path ��gure �� illustrates the second case and the
corresponding transformation��

Table � gives an overview of the main results of this section�

The observations in this section have led us to the following conjecture�

Conjecture ��� Any arbitrary well�behaved work�ow model that

�� does not have loops


�� when reduced
 does not have a parallel exit from a parallel structure
 and

�� when reduced
 does not have a synchronised entry into a parallel structure


can be translated to a SWM�

��� Work�ows with parallelism and loops

Finding out whether a work�ow can deadlock or not in the context of loops is much more
complex and conjecture ��� cannot be automatically applied� To expose potential di�culties
let us concentrate on what kind of loops we can encounter in a work�ow model once and�join
and and�split constructs are used� Every cycle in a graph has an entry point that can be either
an or�join or an and�join and an exit point that can be either an and�split or an or�split� Cycles
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Figure ��� Exit path not joining main path in parallel exit from decision structure

without an entry point cannot start and cycles without an exit point cannot terminate� The
latter case can be represented by a cycle with an exit point where the exit condition on the
or�split is set to false�

Most cycles will have an or�joins and or�splits as entry and exit points respectively �note
that there may be many exit and entry points in the cycle� provided that the work�ow is
well�behaved� The transformation of such cycles is straightforward using transformations as
presented earlier in this section�

If the cycle has an and�join as an entry point
 the work�ow will most likely deadlock� Examples
of two work�ows containing cycles with and�join as an entry�point that do not deadlock are
shown in �gure ���

Conversely
 most work�ows that have an and�split as an exit point will most likely result
in multiple instances� Our previous observation that any work�ow resulting in deadlock or
multiple instances cannot be modelled as a structured work�ow certainly holds whether or not
the work�ow has loops� The major impact of introducing loops though is that �nding out if the
work�ow deadlocks or results in multiple instances becomes a non�trivial task �see �HOR��

HO�����

pattern transformation possibility comments

Entry to par� struct� transf� not always possible only if overlapping struct�

Exit from par� struct� no transf� possible deadlock

Synchr� entry to a decision no transf� possible deadlock

Par� exit from a decision transf� not always possible overlapping struct� or
paths do not merge

Synchr� entry into a par� struct� no transf� possible

Par� exit from a par� struct� no transf� possible

Entry to decision transf� possible

Exit from decision transf� possible

Table �� Summary of results
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In rare cases when a cycle has an and�join as entry and an and�split as exit point and the
work�ow involved does not deadlock nor result in multiple instances
 theorem ��� is helpful
when determining if such a work�ow can be remodelled as a structured work�ow� In �gure ��
for example
 work�ow A can be remodelled as a structured work�ow whereas work�ow B

cannot� The equivalent work�ow to work�ow A is shown in �gure ���
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Figure ��� Structured version of leftmost work�ow of �gure ��

��� Suitability of transformations

The transformations presented earlier in this section are using two major techniques� �� node
duplication and �� use of auxiliary variables to control conditions� In this section we will
comment on the suitability of these solutions�

Suitability in general refers to the relation between concepts o�ered in the speci�cation tech�
nique and concepts required by the problem domain� There are a number of aspects in a
work�ow speci�cation
 e�g� data and control �ow
 and there are a number of ways in which the
same underlying model can be presented
 e�g� data �ow and control �ow �view�� Yet
 concep�
tual models
 in general
 are required to convey a certain amount of information which should
not be split up
 if the model is to be e�ective �this corresponds to the Cognitive Su�ciency

Principle promulgated by �BH����� For example we believe that the model that conveys all

�	



control �ow interdependencies between activities in a control view is a better model than the
model that requires both the control �ow view and data �ow view to understand relationships
between activities� Consider for example the three models from �gure 	� In models B� and
B� it is clear that activities B and D are exclusive in the sense that they will never be both
executed in any process instance� On the other hand
 in model B�
 it seems that activity D

can follow the execution of activity B� Only close inspection of the or�splits� predicates as well
as implicit knowledge that activity B does not change the value of variable � can lead to the
conclusion that activities B and D are indeed exclusive�

To retain the suitability of a certain work�ow model
 transformations should avoid using
auxiliary variables to control or�splits through predicates� Unfortunately
 this is not always
possible�

Theorem ��� There are forms of unstructuredness that cannot be transformed without the
use of auxiliary variables�

Proof�

Consider the work�ow model of �gure �� This work�ow model contains multiple exits from
a loop and as such is unstructured� Now consider another work�ow model equivalent to
this model
 which is structured� The �rst observation is that as work�ow representations
are �nite
 this structured work�ow model needs to contain at least one loop as the
associated language is in�nite� On one such loop there has to be an occurrence of both
activities A and C� Activities B and F should be outside any loop �as we cannot use
predicates anymore to prevent paths containing these activities to be chosen if they are
included in the body of the loop�� Playing the bisimulation game yields that after each
instance of activity A one should be able to choose to perform either C or B� Since B is
outside any loop
 there has to be an exit point from the loop sometime after activity A
�but before activity C
 as one cannot use predicates that guarantee that activity C will be
skipped after the decision has been made to exit the loop�� Similarly
 after each instance
of activity C one should be able to choose to perform either activity E or activity F � As F
is outside any loop
 we also have an exit point from this loop after activity C �but before
activity E�� Hence
 the loop under consideration has at least two exit points and the
work�ow cannot be structured� Contradiction� Hence a structured work�ow equivalent

not using auxiliary variables
 to the work�ow of �gure � does not exist� �

An alternative technique to transform arbitrary models into a structured form requires node
duplication� As has been proved earlier
 it cannot be used for every model
 but even when it
can be used
 it is not without associated problems� Consider once again the model in �gure 	�
If activity D in the left model is followed by a large work�ow speci�cation
 the transformation
presented in the right model would need to duplicate the whole work�ow speci�cation following
activity D� The resulting work�ow will be almost twice as big as the original and will therefore
be more di�cult to comprehend�

�




� Restricted Loops

In this section we will focus on languages that impose restrictions on loops only� Examples
of such languages are MQSeries�Work�ow and InConcert� The main reason these languages
impose restrictions on loops is that the introduction of cycles in their work�ow speci�cations
would result in an immediate deadlock because of their evaluation strategy� MQSeries�Work�ow
for example propagates true and false tokens and its synchronizing or�join expects tokens from
every incoming branch before execution can resume� this results in deadlock if one of these
branches is dependent on execution of the or�join itself� Note that the semantics of the synchro�
nising or�join is di�erent from the semantics of the or�join as presented earlier in this paper

but that does not compromise the obtained results�

The approach chosen in MQSeries�Work�ow and InConcert guarantees that their speci�cations
are well�behaved �for MQSeries�Work�ow this is formally proven in �HK�����

Even though one may ask the question whether any arbitrary work�ow speci�cation can be
translated to a speci�cation that uses restricted loops only
 the more practical question would
be to ask whether any well�behaved arbitrary speci�cation can be translated to a speci�cation
using restricted loops only� As the next theorem shows
 the answer to this question is negative�

Theorem 	�� There are well�behaved arbitrary work�ow speci�cations that cannot be ex�
pressed as RLWFMs�
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Figure ��� Well�behaved arbitrary work�ow

Proof�

By showing that the work�ow from �gure �� cannot be modelled as an RLWFM�

Observe that after completion of the initial activity and as long as � evaluates to true

there will be at least two tokens in the corresponding Petri�net� That means that in an
equivalent work�ow speci�cation that has restricted loops only
 there have to be two
concurrent restricted loops running in parallel �if there was only one loop
 the moment
the exit condition was evaluated there would be only one token in the corresponding
Petri�net��

��



One of the restricted loops would have to contain activities A
 B
 C
 and E
 and the
other loop would have to contain activities D
 F 
 G
 and H� In the original work�ow
speci�cation A is causally dependent on D� That means that there must be a path
between A and D but that is impossible if A belongs to a di�erent restricted loop than
D according to the de�nition of a restricted loop� �

The careful reader may have noticed that in the work�ow model of �gure �� data is used to
make sure that both loops are exited at the same time �otherwise deadlock would occur�� It is
an open question as to whether there exist well�behaved arbitrary work�ow speci�cations that
do not contain decision dependencies and that can not be transformed into an RLWFM�

	 Conclusions

The transformation of arbitrary work�ow models to work�ows in a structured form is a ne�
cessity typically faced by either an application programmer who has to implement a non�
structured work�ow speci�cation in an environment supporting structured speci�cations only
�e�g� SAP R�� work�ow or Filenet Visual Work�o�
 or by a business analyst who is trying to
capture real�world requirements in a structured work�ow speci�cation technique �e�g� UML�s
activity diagrams��

In this paper we have shown that even simple transformations require the use of auxiliary vari�
ables which results in the introduction of dependencies between decisions in a work�ow graph�
As a result the transformed work�ow speci�cation is typically more di�cult to understand for
end�users� Moreover
 some arbitrary speci�cations cannot be transformed at all to a structured
form� Hence in general
 structured models are less expressive and less suitable than arbitrary
models�

For these reasons it is our contention that any high�end work�ow management system should
support the execution of arbitrary work�ow speci�cations� To some
 this might seem to contrast
with the common consensus of avoiding GOTO statements �and using WHILE loops instead�
in procedural programming languages
 but
 as shown throughout this paper
 the presence of
parallelism as well as the nature of work�ow speci�cations provide the essential di�erence�

As a consequence
 the good work�ow modelling environment should be supported by a pow�
erful veri�cation engine that would help process modellers detect syntactical problems such as
potential deadlock or unwanted multiple instances� Using sophisticated veri�cation tools for
these purposes �incorporating techniques from state�of�the�art Petri�net theory� seems feasible
from a practical perspective �see �AH�����
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