
BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

1

Pi Calculus Versus Petri Nets

Let us eat "humble pie" rather than further inflate the "Pi hype"

Wil van der Aalst

Abstract

In the context of Web Service Composition Languages (WSCLs), there is on ongoing debate on
the best foundation for Process-Aware Information Systems (PAIS’s): Petri nets or Pi calculus.
Example of PAIS’s are Workflow Management (WFM), Business Process Management (BPM),
Business-to-Business (B2B), Customer Relationship Management (CRM), and Enterprise
Resource Planning (ERP) systems. Clearly, the web service paradigm will change the
architecture of these systems dramatically. Triggered by industry standards such as SOAP,
WSDL, UDDI, etc., standards are being proposed for orchestrating web services. Examples of
such WSCLs are BPEL4WS, BPML, WSFL, WSCI, WS-CDL, and XLANG. In the debate on Petri
nets versus Pi calculus, many players in the "WSCL marketplace" are using demagogic
arguments not based on concrete facts. This short note is an attempt to create a more mature
discussion on the pros and cons of Petri nets and Pi calculus for WSCLs. A simple example is
given to illustrate fundamental differences between Petri nets and Pi calculus. The paper also
states seven challenges, in particular for those advocating the use of Pi calculus. Hopefully, this
note will contribute to expose the people who try to "hype" things like Pi calculus only for
marketing purposes. Note that the big discrepancy between the "Pi-hype" and reality will not only
limit the applicability of WSCLs but will also discredit a beautiful scientific framework like Pi
calculus.

Key words: Web Service Composition Languages, Petri nets, Pi calculus, BPEL4WS, BPML,
WSFL, XLANG, WS-CDL, and WSCI.

1 Introduction

In the recently released BPEL4WS (Business Process Execution Language for Web Services,
[14]) specification builds on IBM's WSFL (Web Services Flow Language, [24]) and Microsoft's
XLANG (Web Services for Business Process Design, [30]). XLANG is a block-structured
language with basic control flow structures, such as sequence, switch (for conditional routing),
while (for looping), all (for parallel routing), and pick (for race conditions based on timing or
external triggers). In contrast to XLANG, WSFL is not limited to block structures and allows for
directed graphs. The graphs can be nested but need to be acyclic. Iteration is only supported
through exit conditions; i.e., an activity/subprocess is iterated until its exit condition is met. The
control flow part of WSFL is almost identical to the workflow language used by IBM's MQ Series
Workflow.
BPML (Business Process Modeling language, [11]) is a standard developed and promoted by
BPMI.org (Business Process Management Initiative). BPMI.org is supported by several
organizations, including Intalio, SAP, Sun, and Versata. The Web Service Choreography
Interface (WSCI, [10]) was submitted in June 2002 to the W3C by BEA Systems, BPMI.org,
Commerce One, Fujitsu Limited, Intalio, IONA, Oracle Corporation, SAP AG, SeeBeyond
Technology Corporation, and Sun Microsystems. There is a substantial overlap between BPML
and WSCI. Recently, a working draft of the Web Services Choreography Description Language
(WS-CDL) was proposed [] by the Web Services Choreography group of the W3C. The proposal
included a very simple process-based language, emphasizing the modeling of interactions.

While languages like BPEL4WS and BPML were developed with web services in mind, the
traditional workflow languages and tools made similar attempts not necessarily based on

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

2

standards like SOAP, WSDL, UDDI, etc. An example is XML Process Definition Language
(XPDL) – the language proposed by the Workflow Management Coalition (WfMC) to interchange
process definitions between different workflow products. The goal of XPDL is to provide a lingua
franca for the workflow domain, allowing for the import and export process definitions between a
variety of tools, ranging from workflow management systems to modeling and simulation tools.
The competition between these languages triggered a discussion on "the best" foundation for
Web Service Composition Languages (WSCLs). Although few articulate the need for a formal
basis clearly, the general opinion is that there should be some formal model on which to base
these complex languages. Clearly, formal models like Petri nets and Pi calculus offer advantages
when it comes to providing solid semantics and analysis methods. Unfortunately, there are few
cases where such a foundation is used to provide solid semantics and analysis methods. At this
point in time, it seems that formal models are used to advertise languages rather than to improve
their quality and applicability. Few examples,such as the Woflan project [32] and the YAWL
project [6], demonstrate in real-life situations the added value of formal methods. This brings us to
the first two challenges.

Challenge 1: Let the people that advocate BPEL4WS, BPML, WSFL, XLANG, XPDL, WS-CDL,
and WSCI show the precise relation between the language and some formal foundation. People
who cannot do this, but still claim strong relationships between their language and, e.g., Pi-
calculus, only cause confusion.

Challenge 2: Let the people that advocate a particular formal model (e.g., Pi-calculus) in the
context of languages like BPEL4WS, BPML, WSFL, XLANG, XPDL, WS-CDL, and WSCI
demonstrate the use of analysis methods and tools based on that formal model (in some real life
setting).

As indicated in the abstract, this paper is about the debate on Petri nets versus Pi calculus in the
context of WSCLs. Therefore, some reflection on the history of concurrency and PAIS’s is in
order.

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

3

2 History Of PAIS’s And Concurrency

Let us first focus on the history of PAIS’s. An interesting starting point, from a scientific
perspective, is the early work on office information systems. In the Seventies, Skip Ellis [15],
Anatol Holt [19], and Michael Zisman [35] already worked on so-called office information systems,
which were driven by explicit process models. It is interesting to see that the three pioneers in this
area independently used Petri-net variants to model office procedures. During the Seventies and
Eighties there was great optimism about the applicability of office information systems.
Unfortunately, few applications succeeded. As a result of these experiences, both the application
of this technology and related research almost stopped for a decade. Hardly any advances were
made in the Eighties. In the Nineties, there was a renewed interest in these systems. The number
of workflow management systems developed in the past decade and the many papers on
workflow technology illustrate the revival of process-aware office information systems. Today
workflow management systems are readily available. However, their application is still limited to
specific industries such as banking and insurance. As indicated by Skip Ellis in “Workflow: The
Process Spectrum” [16], it is important to learn from these ups and downs. The failures in the
Eighties can be explained by both technical and conceptual problems. In the Eighties, networks
were slow or not present at all; there were no suitable graphical interfaces, and proper
development software was missing. However, there were also more conceptual problems: There
was no unified way of modeling processes, and the systems were too rigid to be used by people
in the workplace. Most of the technical problems have been resolved by now. However, the more
conceptual problems remain. Good standards for business process modeling are still missing,
and even today's workflow management systems enforce unnecessary constraints on the
process logic (e.g., processes are made more sequential that they need to be).
InM. Zur Muehlen’s Workflow-based Process Controlling [27], an interesting historic overview of
office automation and workflow prototypes is given. History clearly shows that (i) workflow
management is not something that started in the Nineties but was present already in the
Seventies with the work of Ellis (OfficeTalk) and Zisman (Scoop), and (ii) the number of
commercial systems has grown considerably in recent years. When considering WSCLs, it is
important to take this history into account and to use experience and knowledge from the
workflow domain; i.e., do not re-invent the wheel!

Research in concurrency theory started with the PhD thesis of Carl Adam Petri [28]. Petri was the
first person to develop models of interacting sequential processes. Before his PhD thesis,
researchers only considered sequential processes as represented in terms of transition systems
or automata. About a decade later, Robin Milner started working on concurrency theory. Later he
would win the Turing award for the following three achievements: (1) LCF, the mechanization of
Scott's Logic of Computable Functions, probably the first theoretically based, yet practical tool for
machine assisted proof construction; (2) ML, the first language to include polymorphic type
inference together with a type-safe exception-handling mechanism; (3) CCS, a general theory of
concurrency. The third achievement – i.e., the development of CCS – has been the main
ingredient for Pi calculus. In 1980 Robin Milner published the book, A Calculus of Communicating
Systems [25], describing the CCS language. CCS is one member of a large family of so-called
process algebras. Other established process algebras include CSP [18] and ACP [12]. Pi calculus
[26] is the most recent addition to the impressive collection of process algebra variants. It extends
CCS with notions of mobility. While new process algebras emerged, Petri nets were extended
with data (color), time, and hierarchy [20,21]. See http://www.daimi.au.dk/PetriNets/ for more
information on the various Petri net models.

The main difference between Petri nets and process algebra is that Petri nets are based on
(bipartite) graphs, while process algebras are based on a textual (i.e., rather than linear)
description. In both areas there is an impressive accumulation of knowledge. Many notions
developed for Petri nets have been translated to process algebra, and vice versa. However,
fundamental differences remain. For example, the notion of invariants developed for Petri nets

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

4

[29] does not exist in process algebra. See T. Basten’s In Terms of Nets [13] for a detailed
comparison of Petri nets and process algebra.

Challenge 3: Let the people who advocate a particular formal model in the context of WSCLs
actually study literature before making any statements.

One of the big misconceptions about Petri nets versus process algebras is that process algebras
are compositional while Petri nets are not. This is complete nonsense! Petri nets have been
extended with hierarchy. Moreover, Petri nets can be used in a compositional way. However,
Petri nets also allow you to model in a non-compositional way. For example, by restricting
subprocesses, e.g., to WF-nets [1], similar compositionality results can be obtained [2,9,17].

3 An Example

To start a more mature discussion on Petri nets versus process algebra, I propose to use
concrete examples. To start such a discussion, I would like to use the model shown in Figure 1.
This model shows a simple classical Petri net with 8 transitions. First, a is executed followed by b
and e in parallel; b is followed by c; however, f has to wait for the completion of both e and c; etc.
Finally, h is executed, and all transitions have been executed exactly once. The Petri net is very
simple – e.g., it does not model any choices, only parallelism. Nevertheless, process algebras like
Pi calculus have problems modeling this simple example.

Figure 1. How to model this in terms of Pi calculus?

To understand the problem, consider the Petri net shown in Figure 1 without the connection
between c and f. In that case the sequences b.c.d and e.f.g are executed in parallel, in between a
and h. In terms of Pi calculus, this is denoted as a.(b.c.d�e.f.g).h. In this notation the "." is used to
denote sequence and the "�" denotes parallelism. Indeed, this notation is elegant and allows for
computer manipulation. Unfortunately, such a simple notation is not possible if the connection
between c and f is restored. The linear language does not allow for this, while, for a graph-based
language like Petri nets, this is not a problem. Note that the claim is not that Pi calculus cannot
model the process shown in Figure 1. However, it illustrates that Pi calculus is a language for
experts where simple things suddenly become very complicated.

The example triggers two additional challenges.

Challenge 4: Let the people that advocate Pi calculus show how the Petri net shown in Figure 1
can be modeled easily.1

Challenge 5: Let the people advocating Pi calculus propose modeling challenges for people
advocating Petri nets as the fundamental language. It would be very interesting to see useful
patterns that actually benefit from the notion of mobility present in Pi calculus.

Based on the outcome for the 5th challenge, it would be nice to try and map patterns involving

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

5

mobility onto Petri nets. It would be interesting to apply the "nets in nets" paradigm developed by
Valk, et al. [31,8], and supported by tools like Renew (http://www.renew.de/).

4 Towards A More Mature Discussion

Clearly, Figure 1 is only a toy example. Therefore, we propose to use a set of relevant patterns to
compare languages. Since 1999, we have been collecting a comprehensive set of workflow
patterns [7]. The results have been made available through http://www.workflowpatterns.com, i.e.,
the "Workflow patterns WWW site." The patterns range from very simple patterns, such as
sequential routing (Pattern 1), to complex patterns involving complex synchronizations, such as
the discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most relevant
patterns. These patterns can be classified into six categories:

1. Basic control-flow patterns. These are the basic constructs present in most workflow
languages to model sequential, parallel, and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the basic
patterns to allow for more advanced types of splitting and joining behavior. An example is
the Synchronizing merge (Pattern 7) which behaves like an AND-join or XOR-join,
depending on the context.

3. Structural patterns. In programming languages, a block structure which clearly identifies
entry and exit points is quite natural. In graphical languages allowing for parallelism such
a requirement is often considered to be too restrictive. Therefore, we have identified
patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case (i.e., workflow
instance) parts of the process sometimes need to be instantiated multiple times; e.g.,
within the context of an insurance claim, multiple witness statements need to be
processed.

5. State-based patterns. Typical workflow systems focus only on activities and events, not
on states. This limits the expressiveness of the workflow language because it is not
possible to have state dependent patterns such as the Milestone pattern (Pattern 18).

6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling an order)
may lead to the cancellation of activities. In some scenarios such events can even cause
the withdrawal of the whole case.

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

6

Basic Control Flow Patterns
• Pattern 1 (Sequence)
• Pattern 2 (Parallel Split)
• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)
• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)
• Pattern 8 (Multi - merge)
• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)
• Pattern 11 (Implicit Termination)

State - based Patterns
• Pattern 16 (Deferred

Choice)
• Pattern 17 (Interleaved

Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances
• Pattern 12 (Multiple Instances Without

Synchronization)
• Pattern 13 (Multiple Instances With a Priori

Design Time Knowledge)
• Pattern 14 (Multiple Instances With a Priori

Runtime Knowledge)
• Pattern 15 (Multiple Instances Without a Priori

Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)
• Pattern 20 (Cancel Case)

Figure 2. Overview of the 20 workflow patterns described in [7].

Figure 2 shows an overview of the 20 patterns grouped into the six categories. A detailed
discussion of these patterns is outside the scope of this paper. The interested reader is referred
to “Workflow Patterns” [7] and http://www.workflowpatterns.com.

We have used these patterns to compare the functionality of numerous WFM systems, but also of
most WSCLs. The result of this evaluation reveals that (1) the expressive power of contemporary
systems/languages leaves much to be desired, and (2) the systems support different patterns.
Note that we do not use the term "expressiveness" in the traditional or formal sense. If one
abstracts from capacity constraints, any workflow language is Turing complete. Therefore, it
makes no sense to compare these languages using formal notions of expressiveness. Instead we
use a more intuitive notion of expressiveness, which takes the modeling effort into account. This
more intuitive notion is often referred to as suitability. See Expressiveness and Suitability of
Languages for Control Flow Modelling…” and “Fundamentals of Control Flow in Workflows”
[22,23] for a discussion on the distinction between formal expressiveness and suitability.
We have evaluated the leading standards for WSCLs. See “Pattern-Based Analysis of BPEL-
4WS” AND “Analysis of Web Services Composition Languages…” [33,34] for more information
about the evaluation of BPEL4WS, XLANG, and WSFL using the patterns. See “Pattern-Based
Analysis of BPML (and WSCI)” [4] for more information about the evaluation of BPML and WSCI
using the patterns. For an overview of these evaluations we refer to “Don’t go with the flow…” [3].

The observation that the expressive power of the available languages and systems leaves much
to be desired triggered the question: How about Pi calculus?

Challenge 6: Let the people that advocate Pi calculus show exactly how existing patterns can be
modeled in terms of Pi calculus.

Challenge 7: Let the people advocating Pi calculus propose new patterns, especially patterns
involving mobility.

5 Conclusion

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

7

This short note is an attempt to trigger a more mature discussion on the foundations of WSCLs.
Both Petri nets and the Pi calculus are solid and respectable languages. Clearly, Robin Milner
developed a beautiful language which can be applied in many application domains. However, the
"Pi hype" is not based on any solid arguments. People who are not familiar with formal methods
are fighting religious wars; they are driven by commercial arguments instead of the desire to build
a solid foundation for WSCLs. As a kind of "antidote" to the Pi hype, this paper has proposed
seven challenges. Moreover, to conclude, I would like to discuss the pros and cons of Petri nets
as an alternative for Pi calculus.

There are at least three good reasons for using Petri nets as a basis for WSCL:2

1. Formal semantics despite the graphical nature
On the one hand, Petri nets are a graphical language which allows for the modeling of
the workflow primitives identified by the WfMC. On the other hand, the semantics of Petri
nets (including most of the extensions) have been defined formally. Many of today's
available WFM systems provide ad hoc constructs to model workflow procedures.
Moreover, there are WFM systems that impose restrictions on many of the workflow
patterns discussed. Some WFM systems also provide exotic constructs whose semantics
are not 100% clear (Cf. the join construct in XPDL and many other languages). Because
of these problems, it is better to use a well-established design language with formal
semantics as a solid basis.

2. State-based instead of event-based
In contrast to many other process modeling techniques, the state of case can be modeled
explicitly in a Petri net. Process modeling techniques, ranging from informal techniques
such as dataflow diagrams to formal techniques such as process algebras, are event-
based; i.e., transitions are modeled explicitly, and the states between subsequent
transitions are only modeled implicitly. Today's WFM systems are typically event-based;
i.e., tasks are modeled explicitly, and states between subsequent tasks are suppressed.
The distinction between an event-based and a state-based description may appear to be
subtle, but patterns like the Deferred Choice (WP16) and the Milestone (WP18) show that
this distinction is of the utmost importance for workflow modeling.

3. Abundance of analysis techniques
Petri nets are marked by the availability of many analysis techniques. Clearly, this is in
favor of Petri nets. Petri-net-based analysis techniques can be used to determine the
correctness of a process design. The availability of these techniques illustrates that Petri
net theory can be used to add powerful analysis capabilities to the next generation of
PAIS’s.

However, as indicated in “Proceedings of the Fourth Workshop on the Practical Use of Coloured
Petri Nets and CPN Tools” [5], there are also problems when modeling workflows are in terms of
Petri nets. For the more advanced routing constructs, it is necessary to resort to high-level nets
[20,21]. Moreover, a straightforward application of high-level Petri nets does not always yield the
desired result. There seem to be three problems relevant for WSCLs:

1. High-level Petri nets support colored tokens; i.e., a token can have a value. Although it is
possible to use this to identify multiple instances of a subprocess, there is no specific
support for patterns involving multiple instances, and the burden of keeping track,
splitting, and joining of instances is carried by the designer.

2. Sometimes two flows need to be joined, while it is not clear whether synchronization is
needed; i.e., if both flows are active an AND-join is needed; otherwise, an XOR-join.
Such advanced synchronization patterns are difficult to model in terms of a high-level
Petri net because the firing rule only supports two types of joins: the AND-join (transition)
or the XOR-join (place).

3. The firing of a transition is always local; i.e., enabling is only based on the tokens in the
input places and firing is only affecting the input and output places. However, some

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

8

events in the workflow may have an effect which is not local; e.g., because of an error
tokens, need to be removed from various places without knowing where the tokens
reside. Everyone who has modeled such a cancellation pattern (e.g., a global timeout
mechanism) in terms of Petri nets knows that it is cumbersome to model a so-called
"vacuum cleaner" removing tokens from selected parts of the net.

Compared to existing WFM languages, high-level Petri nets are quite expressive when it comes
to supporting the workflow patterns. Recall that we use the term "expressiveness" not in the
formal sense. High-level Petri nets are Turing complete, and therefore, can do anything we can
define in terms of an algorithm. However, this does not imply that the modeling effort is
acceptable. High-level nets, in contrast to many workflow languages, have no problems dealing
with state-based patterns. This is a direct consequence of the fact that Petri nets use places to
represent states explicitly. Although high-level Petri nets outperform most of the existing
languages when it comes to modeling the control flow, the result is not completely satisfactory
since the three problems indicated hamper the application in the WFM/BPM domain. This
triggered the development of YAWL (Yet Another Workflow Language). YAWL is based on Petri
nets, but extended with additional features to facilitate the modeling of complex workflows [5,6].
See http://www.citi.qut.edu.au/yawl/ for more information or to download the YAWL system.

References

[1]
W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

[2]
W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-net-
based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 161-183. Springer-Verlag, Berlin, 2000.

[3]
W.M.P. van der Aalst. Don't go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72-76, 2003.

[4]
W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-Based
Analysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05, Queensland
University of Technology, Brisbane, 2002.

[5]
W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Expressive
Power of (Petri-net-based) Workflow Languages. In K. Jensen, editor, Proceedings of the
Fourth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN
2002), volume 560 of DAIMI, pages 1-20, Aarhus, Denmark, August 2002. University of
Aarhus.

[6]
W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Accepted for publication in Information Systems, and also available as QUT Technical
report, FIT-TR-2003-04, Queensland University of Technology, Brisbane, 2003.

[7]
W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

[8]
W.M.P. van der Aalst, D. Moldt, and F. Wienberg. Enacting Interorganizational Workflows
using Nets in Nets. In J. Becker, M zur Mühlen, and M. Rosemann, editors, Proceedings
of the 1999 Workflow Management Conference, volume 70 of Working Paper Series of

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

9

the Department of Information systems, pages 117-136, Muenster, Germany, November
1999. University of Muenster.

[9]
W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Component-Based
Software Architectures: A Framework Based on Inheritance of Behavior. Science of
Computer Programming, 42(2-3):129-171, 2002.

[10]
A. Arkin, S. Askary, S. Fordin, and W. Jekel et al. Web Service Choreography Interface
(WSCI) 1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun Microsystems,
2002.

[11]
A. Arkin et al. Business Process Modeling Language (BPML), Version 1.0, 2002.

[12]
J.C.M. Baeten. Procesalgebra : een formalisme voor parallelle, communicerende
processen. Kluwer, Deventer, 1986.

[13]
T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, December
1998.

[14]
F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana.
Business Process Execution Language for Web Services, Version 1.0. Standards
proposal by BEA Systems, International Business Machines Corporation, and Microsoft
Corporation, 2002.

[15]
C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information Flow. In
Proceedings of the Conference on Simulation, Measurement and Modeling of Computer
Systems, pages 225-240, Boulder, Colorado, 1979. ACM Press.

[16]
C.A. Ellis and G. Nutt. Workflow: The Process Spectrum. In A. Sheth, editor, Proceedings
of the NSF Workshop on Workflow and Process Automation in Information Systems,
pages 140-145, Athens, Georgia, May 1996.

[17]
K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow
Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst and E. Best, editors,
Application and Theory of Petri Nets 2003, volume 2679 of Lecture Notes in Computer
Science, pages 335-354. Springer-Verlag, Berlin, 2003.

[18]
C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
1985.

[19]
A. W. Holt. Coordination Technology and Petri Nets. In G. Rozenberg, editor, Advances
in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 278-296.
Springer-Verlag, Berlin, 1985.

[20]
K. Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis.
In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in
Computer Science, pages 342-416. Springer-Verlag, Berlin, 1990.

[21]
K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1. EATCS monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, 1997.

[22]

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

10

B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia,
2003. Available via http://www.workflowpatterns.com.

[23]
B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of
Control Flow in Workflows. Acta Informatica, 39(3):143-209, 2003.

[24]
F. Leymann. Web Services Flow Language, Version 1.0, 2001.

[25]
R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

[26]
R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, Cambridge, UK, 1999.

[27]
M. Zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.

[28]
C.A. Petri. Kommunikation mit Automaten. PhD thesis, Fakultät für Mathematik und
Physik, Technische Hochschule Darmstadt, Darmstadt, Germany, 1962.

[29]
W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

[30]
S. Thatte. XLANG Web Services for Business Process Design, 2001.

[31]
R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In
J. Desel and M. Silva, editors, Application and Theory of Petri Nets 1998, volume 1420 of
Lecture Notes in Computer Science, pages 1-25. Springer-Verlag, Berlin, 1998.

[32]
H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes
using Woflan. The Computer Journal, 44(4):246-279, 2001.

[33]
P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-Based
Analysis of BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queensland University of
Technology, Brisbane, 2002.

[34]
P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Liddle,
T.W. Ling, and P. Scheuermann, editors, 22nd International Conference on Conceptual
Modeling (ER 2003), volume 2813 of Lecture Notes in Computer Science, pages 200-
215. Springer-Verlag, Berlin, 2003.

[35]
M.D. Zisman. Representation, Specification and Automation of Office Procedures. PhD
thesis, University of Pennsylvania, Warton School of Business, 1977.

Footnotes:

1Triggered by an earlier version of this paper (March 2004), many people have discussed and/or
modeled the example shown in Figure 1. For example, more than 30 people responded on the
challenge posted on www.workflow-research.de. Some people have tackled the problem by
introducing a separate process for each of the activities and then let those processes
communicate. A more elegant solution was given by Robin Milner within the Petri nets and pi
calculus for business processes working group (cf. www.smartgroups.com/groups/petri_and_pi).

BPTrends May 2005 Pi Calculus Versus Petri Nets

Copyright © 2005 Wil van der Aalst www.bptrends.com

11

He suggested modeling this as new x [a.(b.c.(d�x)�e.x.f.g).h]. This is indeed a compact
representation of the intended process. However, it also triggers some questions. Causality is
normally represented by the "." to denote sequence. However, for the casual relation between c
and f, one now has to introduce an event and hide it (new x �), add x in parallel to d (i.e., (d�x)),
and insert the complement in-between e and f (i.e., e.x.f). These changes are definitely not
dramatic but illustrate the essential differences between the various languages.
2Note that we focus on the workflow-functionality of WSCL. Clearly, there are other aspects that
are also important. However, the dominant perspective of WSCL is the workflow/process
perspective. Only a superficial scan of existing WSCLs like BPEL4WS and BPML will reveal this.

About the author

Prof.dr.ir.Wil van der Aalst (1966) is a full professor of Information Systems and head of the
Information Systems sub-department of the department of Technology Management at the
Technische Universiteit Eindhoven. He is also an adjunct professor at the Faculty of Information
Technology of Queensland University of Technology. He holds an MSc in Computing Science
(1988) and a PhD in Mathematics (1992) awarded by the Technische Universiteit Eindhoven.
From 1992 until 1999 he worked as an assistant/associate professor for the department of
Mathematics and Computing Science at the Technische Universiteit Eindhoven, where he
supervised the SMIS research group from 1996 until 1999. From 1993-1998 he also worked as a
part-time consultant for Bakkenist. He has been a visiting professor to several universities
including the Universität Karlsruhe (5 months), the University of Georgia (5 months), the
University of Colorado (8 months), and Queensland University of Technology (3 months). Wil van
der Aalst directs the Eindhoven Digital Laboratory for Business Processes (EDL-BP) and is a
fellow and management team member of the research institute BETA. His research interests
include business process management, information systems, simulation, Petri nets, process
models, workflow management systems, process mining, verification techniques, enterprise
resource planning systems, computer supported cooperative work, and interorganizational
business processes. He has published more than 200 books, journal papers, book chapters,
conference papers, and reports on these topics.

