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Abstract. Adaptability has become one of the major research
topics in the area of workflow management. Today’s workflow
management systems have problems dealing with both ad-hoc
changes and evolutionary changes. As a result, the workflow
management system is not used to support dynamically chang-
ing workflow processes or the workflow process is supported in
a rigid manner, i.e., changes are not allowed or handled outside
of the workflow management system. In this paper, we focus on a
notorious problem caused by workflow change: the “dynamic
change bug” (Ellis et al., Proceedings of the Conference on
Organizational Computing Systems, Milpitas, California, ACM
SIGOIS, ACM Press, New York, 1995, pp. 10−21). The dy-
namic change bug refers to errors introduced by migrating a
case (i.e., a process instance) from the old process definition to
the new one. A transfer from the old process to the new process
can lead to duplication of work, skipping of tasks, deadlocks,
and livelocks. This paper describes an approach for calculating
a safe change region. If a case is in such a change region, the
transfer is postponed.
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1. Introduction

Workflow management technology aims at the auto-
mated support and coordination of business processes
to reduce costs and flow times, and increase quality of
service and productivity. A critical challenge for work-
flow management systems is their ability to respond
effectively to changes. Changes may range from ad-
hoc modifications of the process for a single customer
to a complete restructuring of the workflow process
to improve efficiency. Today’s workflow management
systems are ill suited to dealing with change. They

typically support a more or less idealized version of the
preferred process. However, the real run-time process
is often much more variable than the process specified
at design-time. The only way to handle changes is to go
behind the system’s back. If users are forced to bypass
the workflow management system quite frequently, the
system is more a liability than an asset. Therefore, we
take up the challenge to find techniques to add flexi-
bility without loosing the support provided by today’s
systems.

Typically, there are two types of changes: (1) ad-hoc
changes and (2) evolutionary changes. Ad-hoc changes
are handled on a case-by-case basis. In order to provide
customer specific solutions or to handle rare events,
the process is adapted for a single case or a limited
group of cases. Evolutionary change is often the re-
sult of reengineering efforts. The process is changed
to improve responsiveness to the customer or to im-
prove the efficiency (do more with less). The trend
is towards an increasingly dynamic situation where
both ad-hoc and evolutionary changes are needed to
improve customer service and reduce costs. In this pa-
per, we restrict ourselves to evolutionary change. In
fact, ad-hoc change is partially handled by at least
two existing workflow management systems: InCon-
cert (Tibco/InConcert) and Ensemble (FileNet).

The term dynamic change refers to the problem
of handling old cases in a new process, e.g., how to
transfer cases to a new version of the process. The dy-
namic change problem which was first mentioned by
Ellis, Keddara, and Rozenberg in 1995 (Ellis et al.,
1995). To discuss this problem we use the two Petri
nets shown in Fig. 1. For an introduction to Petri nets
(Reisig and Rozenberg, 1998) we refer to Appendix A.
If the sequential workflow process (left) is changed

297



298 van der Aalst

Fig. 1. The dynamic change bug.

into the workflow process where tasks send goods and
send bill can be executed in parallel (right) there are
no problems, i.e., it is always possible to transfer a case
from the left to the right. The sequential process has five
possible states and each of these states corresponds to
a state in the parallel process. For example, the state
with a token in s3 is mapped onto the state with a to-
ken in p3 and p4. In both cases, tasks prepare shipment
and send goods have been executed and send bill and
record shipment still need to be executed. Now con-
sider the situation where the parallel process is changed
into the sequential one, i.e., a case is moved from the
right-hand-side process to the left-hand-side process.
For most of the states of the right-hand-side process
this is no problem, e.g., a token in p1 is moved to s1, a
token in p3 and a token in p4 are mapped onto one token
in s3, and a token in p4 and a token in p5 are mapped
onto one token in s4. However, the state with a token in
both p2 and p5 (prepare shipment and send bill have
been executed) causes problems because there is no
corresponding state in the sequential process (it is not
possible to execute send bill before send goods). If the
case is moved to place s2 or place s3, task send bill
is executed twice. If the case is moved to place s4 or
place s3, task send goods is not executed at all. The
example in Fig. 1 shows that it is not straightforward
to migrate old cases to the new process after a change.

The problem illustrated in Fig. 1 is a result of re-
ducing the degree of parallelism by making the process
sequential. Similar problems occur when the order of
tasks is changed, e.g., two sequential tasks are swapped.
Extending the workflow with new tasks, removing
parts, or aggregating a group of tasks into a single task
may result in similar problems. When changing the
workflow on-the-fly, i.e., running cases are transferred
to the new process definition, the dynamic change bug
is likely to occur. Therefore, the problem is very rele-
vant for a workflow management system truly support-
ing adaptive workflow. Today’s workflow management
systems are not able to handle this problem. These sys-
tems use a versioning mechanism, i.e., every change
leads to a new version and each case refers to the ap-
propriate version. If a case starts using a version of
the process, it will continue to use this version. The
versioning mechanism may be suitable in some situa-
tions. An administrative process with a short flow time
is a good candidate for a versioning mechanism. How-
ever, there are many situations where the mechanism
is not appropriate. If a case has a long flow time, then
it is often not acceptable to handle existing cases this
way. Consider for example a process for handling mort-
gage loans. Mortgages typically have a duration of 20
to 30 years. If the process changes every month, this
would lead to hundreds of different versions running
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in parallel. To reduce cost and to keep the processes
manageable, the number of active versions (i.e., ver-
sions still used by cases) should be kept to a minimum.
Also for processes with a shorter flow time, it may be
undesirable to have many versions running in paral-
lel. In fact, there may be legal reasons (e.g., starting
from January 2001 a new step in the process is manda-
tory), forcing the transfer of cases to the new process.
Unfortunately, problems such as the one illustrated by
Fig. 1 make a direct transfer hazardous. Without exter-
minating the dynamic change bug the next generation
of workflow management systems will be unable to
truly support adaptive workflow.

To exterminate the dynamic change bug, we propose
an approach that automatically calculates the change
region. The change region is determined by comparing
the old and the new process and extending the regions
that have changed with regions that are affected by
the change. Due to the possibly complex mixture of
different routing constructs (choice, synchronization,
iteration, etc.), it is far from trivial to compute the re-
gions that are affected. If a case is in the change region,
it cannot be transferred. The transfer is delayed until
the change region is empty. We will show that postpon-
ing the migration of a case until the change region is
empty, results in the correct execution of the case. For
a short period (depending on the change region), there
are multiple versions but as soon as a transfer is safe the
case is handled according to the new process definition.

The approach differs from existing approaches
(Aalst and Basten, 2001; Aalst, Desel and Oberweis,
2000b; Aalst et al., 2000a; Casati et al., 1998; Reichert
and Dadam, 1998; Ellis, Keddara, and Rozenberg,
1995; Ellis and Keddara, 2000a, 2000b; Michelis and
Ellis, 1998; Keddara, 1999; Joeris and Herzog, 1998;
Agostini and Michelis, 2000; Sadiq, Marjanovic and
Orlowska, 2000; Vossen and Weske, 1999; Weske,
2000) in the sense that no local transformation rules
are assumed and that the calculation of the change re-
gion is based on the structure of the workflow graph.
Note that we restrict ourselves to logical errors in the
control-flow resulting from change. Clearly, there are
other types of constraint violations. Moreover, change
can also result in resource or data conflicts. These prob-
lems are outside the scope of this paper.

The remainder of this paper is organized as fol-
lows. First, we introduce the basic concepts and the
techniques we are going to use. The approach pre-
sented in this paper is based on a special subclass
of Petri nets (WF-nets) and a notion of correctness

named soundness (Aalst, 1998b, 2000). In Section 3,
we clearly define to problem (the dynamic change bug)
and give a number of dynamic change examples. Then,
we present the algorithm to calculate the change region.
In Section 5, we compare this approach with other ap-
proaches addressing the dynamic change problem. Fi-
nally, we summarize the results presented and conclude
with our future plans.

2. Preliminaries

This section introduces the basic concepts, definitions,
and techniques used to tackle the dynamic change
bug. For a more elaborate discussion on these top-
ics, we refer to Aalst (1998b, 2000), Ellis, Keddara
and Rozenberg (1995), and Ellis and Nutt (1993).
For an introduction to Petri nets we refer to Desel
and Esparza (1995), Murata (1989), and Reisig and
Rozenberg (1998) and the appendix.

2.1. Workflow process definitions
The term workflow management (Koulopoulos, 1995;
Lawrence, 1997; Jablonski and Bussler, 1996) refers to
the domain which focuses on the logistics of business
processes. There are also people who use the term office
logistics. The ultimate goal of workflow management
is to make sure that the proper activities are executed by
the right person at the right time. Although it is possible
to do workflow management without using a workflow
management system, most people associate workflow
management with workflow management systems. The
workflow Management Coalition (WfMC) defines a
workflow management system as follows (WFMC,
1996): A system that completely defines, manages,
and executes workflows through the execution of soft-
ware whose order of execution is driven by a com-
puter representation of the workflow logic. Other
terms to characterize a workflow management system
are: ‘business operating system’, ‘workflow manager’,
‘case manager’ and ‘logistic control system’.

Workflows are case-based, i.e., every piece of work
is executed for a specific case. Examples of cases are
a mortgage, an insurance claim, a tax declaration, an
order, or a request for information. Cases are often gen-
erated by an external customer. However, it is also pos-
sible that a case is generated by another department
within the same organization (internal customer). The
goal of workflow management is to handle cases as
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efficiently and effectively as possible. A workflow pro-
cess is designed to handle similar cases. Cases are han-
dled by executing tasks in a specific order. The work-
flow process definition specifies which tasks need to
be executed and in what order. Alternative terms for
workflow process definition are: ‘procedure’, ‘flow di-
agram’ and ‘routing definition’. Since tasks are exe-
cuted in a specific order, it is useful to identify con-
ditions which correspond to causal dependencies be-
tween tasks. A condition holds or does not hold (true
or false). Each task has pre- and postconditions: the
preconditions should hold before the task is executed,
and the postconditions should hold after execution of
the task. Many cases can be handled by following the
same workflow process definition. As a result, the same
task has to be executed for many cases. A task that
needs to be executed for a specific case is called a work
item. An example of a work item is: execute task ‘send
refund form to customer’ for case ‘complaint sent by
customer Baker’. Most work items are executed by a
resource. A resource is either a machine (e.g., a printer
or a fax) or a person (participant, worker, employee).
To facilitate the allocation of work items to resources,
resources are grouped into classes. A resource class is
a group of resources with similar characteristics. There
may be many resources in the same class and a resource
may be a member of multiple resource classes. If a re-
source class is based on the capabilities (i.e., functional
requirements) of its members, it is called a role. If the
classification is based on the structure of the organiza-
tion, such a resource class is called an organizational
unit. A work item which is being executed by a specific
resource is called an activity.

Of all workflow perspectives (e.g., control-flow,
data, organization, task, operation) (Jablonski and
Bussler, 1996), the control-flow perspective is the most
prominent one, because the core of any workflow sys-
tem is formed by the processes it supports. In the
control-flow dimension building blocks such as the
AND-split, AND-join, OR-split, and OR-join are used
to model sequential, conditional, parallel and iterative
routing (WFMC, 1996). Clearly, a Petri net can be used
to specify the routing of cases. See Appendix A for an
introduction to Petri nets. Tasks are modeled by transi-
tions and causal dependencies are modeled by places
and arcs. In fact, a place corresponds to a condition
which can be used as pre- and/or post-condition for
tasks. An AND-split corresponds to a transition with
two or more output places, and an AND-join corre-
sponds to a transition with two or more input places.

OR-splits/OR-joins correspond to places with multiple
outgoing/ingoing arcs. Moreover, in Aalst (1998a) it is
shown that the Petri net approach also allows for useful
routing constructs absent in many workflow manage-
ment systems.

A Petri net which models the control-flow dimen-
sion of a Workflow, is called a WorkFlow net (WF-net).
It should be noted that a WF-net specifies the dynamic
behavior of a single case in isolation.

Definition 1 (WF-net). A Petri net PN = (P, T, F)
is a WF-net (WorkFlow net) if and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net has one input place (i) and one output place
(o) because any case handled by the procedure rep-
resented by the WF-net is created when it enters the
workflow management system and is deleted once it is
completely handled by the workflow management sys-
tem, i.e., the WF-net specifies the life-cycle of a case.
The third requirement in Definition 1 has been added to
avoid ‘dangling tasks and/or conditions’, i.e., tasks and
conditions which do not contribute to the processing
of cases. If there is no confusion possible we will use
i and o to denote the input place and output place of
a WF-net. If confusion is possible, we add a subscript
referring to the proper WF-net, i.e., iPN and oPN denote
the input place and output place of the WF-net P N .

Given the definition of a WF-net it is easy derive the
following properties.

Proposition 1 (Properties of WF-nets). Let PN =
(P, T, F) be Petri net.

– If PN is WF-net with source place i, then for any
place p ∈ P: •p 	= ∅ or p = i, i.e., i is the only
source place.

– If PN is WF-net with sink place o, then for any
place p ∈ P: p• 	= ∅ or p = o, i.e., o is the only
sink place.

– If PN is a WF-net and we add a transition t∗ to
PN which connects sink place o with source place
i (i.e., •t∗ = {o} and t∗• = {i}), then the resulting
Petri net is strongly connected.

– If PN has a source place i and a sink place o and
adding a transition t∗ which connects sink place o
with source place i yields a strongly connected net,
then every node x ∈ P ∪ T is on a path from i to o
in PN and PN is a WF-net.
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Fig. 2. A WF-net for the processing of complaints.

Fig. 2 shows a WF-net which models the process-
ing of complaints. First the complaint is registered
(task register), then in parallel a questionnaire is sent
to the complainant (task send questionnaire) and the
complaint is evaluated (task evaluate). If the com-
plainant returns the questionnaire within two weeks,
the task process questionnaire is executed. If the ques-
tionnaire is not returned within two weeks, the result
of the questionnaire is discarded (task time out). Based
on the result of the evaluation, the complaint is pro-
cessed or not. The actual processing of the complaint
(task process complaint) is delayed until condition c5
is satisfied, i.e., the questionnaire is processed or a
time-out has occurred. The processing of the com-
plaint is checked via task check processing. Finally,
task archive is executed. Note that sequential, condi-
tional, parallel and iterative routing are present in this
example.

The WF-net shown in Fig. 2 clearly illustrates
that we focus on the control-flow dimension. We ab-
stract from resources, applications, and technical plat-
forms. Moreover, we also abstract from case vari-
ables and triggers. Case variables are used to resolve
choices (OR-split), i.e., the choice between process-
ing required and no processing is (partially) based on
case variables set during the execution of task evalu-
ate. The choice between processing OK and process-
ing NOK is resolved by testing case variables set by
check processing. In the WF-net we abstract from case
variables by introducing non-deterministic choices in
the Petri-net. If we don’t abstract from this informa-

tion, we would have to model the (unknown) behav-
ior of the applications used in each of the tasks and
analysis would become intractable. In Fig. 2 we have
not indicated that time out and process questionnaire
require triggers. Task time out requires a time trigger
(‘two weeks have passed’) and process questionnaire
requires a message trigger (‘the questionnaire has been
returned’). A trigger can be seen as an additional con-
dition which needs to be satisfied. In the remainder of
this paper, we abstract from these trigger conditions.
We assume that the environment behaves fairly, i.e.,
the liveness of a transition is not hindered by the con-
tinuous absence of a specific trigger. As a result, every
trigger condition will be satisfied eventually.

2.2. Soundness property
In this subsection we summarize some of the basic
results for WF-nets presented in Aalst (2000). The re-
mainder of this paper will build on these results.

The three requirements stated in Definition 1 can be
verified statically, i.e., they only relate to the structure
of the Petri net. However, there is another requirement
which should be satisfied:

For any case, the procedure will terminate eventu-
ally and the moment the procedure terminates there
is a token in place o and all the other places are
empty.

Moreover, there should be no dead tasks, i.e., it should
be possible to execute an arbitrary task by following
the appropriate route though the WF-net, and the
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WF-net should be safe. These additional requirements
for WF-nets correspond to the so-called soundness
property.

Definition 2 (Sound). A procedure modeled by a
WF-net PN = (P, T, F) is sound if and only if:

(i) For every state M reachable from state i , there
exists a firing sequence leading from state M to
state o. Formally:1

∀M (i
∗→ M) ⇒ (M

∗→ o)

(ii) State o is the only state reachable from state i with
at least one token in place o. Formally:

∀M (i
∗→ M ∧ M ≥ o) ⇒ (M = o)

(iii) There are no dead transitions in (PN , i). Formally:

∀t∈T ∃M,M ′ i
∗→ M

t→ M ′

(iv) (PN , i) is safe.

Note that the soundness property relates to the dynam-
ics of a WF-net. The first requirement in Definition 2
states that starting from the initial state (state i), it is al-
ways possible to reach the state with one token in place
o (state o). If we assume a strong notion of fairness, then
the first requirement implies that eventually state o is
reached. Strong fairness means that in every infinite
firing sequence, each transition fires infinitely often.
The fairness assumption is reasonable in the context of

Fig. 3. Another WF-net for the processing of complaints.

workflow management: All choices are made (implic-
itly or explicitly) by applications, humans or external
actors. Clearly, they should not introduce an infinite
loop. Note that the traditional notions of fairness (i.e.,
weaker forms of fairness with just local conditions, e.g.,
if a transition is enabled infinitely often, it will fire even-
tually) are not sufficient. See Aalst (1998b) and Kindler
and Aalst (1999) for more details. The second require-
ment states that the moment a token is put in place o,
all the other places should be empty. Sometimes the
term proper termination is used to describe the first
two requirements (Gostellow et al., 1972). The third
requirement states that there are no dead transitions
(tasks) in the initial state i. The last requirement states
that the WF-net should be safe, i.e., for a single case
in isolation, it is not allowed to have multiple tokens in
one place.

Fig. 2 is an example of a WF-net which is sound.
Fig. 3 shows a WF-net which is not sound. This WF-
net is an attempt to simplify the one shown in Fig. 2:
The token in c5 is now actually removed by pro-
cess complaint, i.e., process complaint does not return
the token and, therefore, archive no longer needs to re-
move the remaining token in c5. Although this may
seem to be a good idea, there are several deficien-
cies. First of all, tasks may be executed after comple-
tion, e.g., after firing register, evaluate, no processing,
and archive there is a token in place o indicating
completion, but at the same time send questionnaire
is enabled. Second, there is a potential deadlock: If
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processing NOK fires, then the WF-net gets stuck in
the state with just a token in c7. Any attempt to ex-
ecute task processing complaint multiple times will
lead to a deadlock situation. Clearly, the WF-net is not
sound.

Given a WF-net PN = (P, T, F), we want to
decide whether PN is sound. In (Aalst, 2000) we have
shown that soundness corresponds to liveness and
boundedness. To link soundness to liveness and bound-
edness, we define an extended net PN = (P̄, T̄ , F̄).
PN is the Petri net obtained by adding an extra
transition t∗ which connects o and i . The extended
Petri net PN = (P̄, T̄ , F̄) is defined as follows:
P̄ = P , T̄ = T ∪ {t∗}, and F̄ = F ∪ {〈o, t∗〉, 〈t∗, i〉}.
In the remainder, we will call such an extended net
the short-circuited net of PN . The short-circuited
net allows for the formulation of the following theorem.

Theorem 1. A WF-net PN is sound if and only if
(PN , i) is live and safe.

Proof: See (Aalst, 2000) �

This theorem shows that standard Petri-net-based anal-
ysis techniques can be used to verify soundness. The
short-circuited version of the WF-net shown in Fig. 2 is
live and safe. The short-circuited version of the WF-net
shown Fig. 3 is not live and not safe.

3. Dynamic Change: The Problem

Today’s workflow management systems typically sup-
port two types of change. The systems aiming at pre-
defined and well-structured workflow processes, often
referred to as production workflow, support a version-
ing mechanism (cf. Section 1). Most of the available
systems fit into this category (e.g., Staffware, MQ Se-
ries workflow, and COSA). Only a few systems support
a different form of change by binding private process
definitions to cases. The latter class of workflow sys-
tems support ad-hoc workflow and examples of such
systems are InConcert (InConcert/TIBCO) and Ensem-
ble (Filenet).

The versioning mechanism supported by most of
the systems binds each case to a specific version of the
workflow. A version itself will never change: Only new
versions can be added. Therefore, each case will fol-
low the procedure defined in the corresponding version
and will not be influenced by changes during its life-
time. Only new cases benefit from change and typically

follow the most recent version of the workflow at the
moment of creation.

Systems supporting ad-hoc workflow associate a
workflow process definition with each case, i.e., each
workflow instance carries its own description. These
systems typically allow for limited change, e.g., in In-
Concert it is possible to remove and/or add tasks in parts
of the process which still need to be executed. Clearly,
these systems do not support evolutionary changes as
described in the introduction.

Both types of change (versioning mechanism and
ad-hoc workflow) are quite easy to implement and are
not confronted with problems such as the one illus-
trated by Fig. 1. The dynamic change problem, which
was first mentioned by Ellis, Keddara, and Rozenberg
in 1995 (Ellis et al., 1995) is not addressed at all by
these systems. Nevertheless, there is a clear need for
mechanisms which allow for the migration of instances
(cases) from one process definition to another. There
are many examples of workflow processes with a con-
siderable number of instances which have a long flow
time. Consider for example mortgage loans which have
a life-cycle of decades. In such situations the version
mechanism is not acceptable: Too many versions would
be active thus resulting in an unmanageable workflow.
There may also be legal and economical reasons for the
migration of instances (cases) from one process defini-
tion to another. If the law changes, some processes may
be affected and the organization may be forced to mi-
grate cases, i.e., to handle existing cases the new way.
The solution provided by ad-hoc workflow systems is
often not acceptable, because every instance needs to
be modified by hand and there is no control over the
uniformity of the workflow process. Moreover, the so-
lutions provided by systems like InConcert restrict the
modeling language to avoid problems such as the one
illustrated by Fig. 1 (e.g., no iteration). Therefore, we
tackle the dynamic change problem using the concepts
introduced in the previous section. The notion of sound-
ness will be used as a staring point for the formulating
the problem.

In the remainder, we assume that two workflow
process definitions are given: (1) the old workflow,
i.e., the workflow process definition before the change,
and (2) the new workflow, i.e., the workflow after the
change. Both workflows are specified in terms of WF-
nets. We denote the old WF-net and the new WF-net
as PN O = (P O , T O , F O ) and PN N = (P N , T N , F N )
respectively. We assume that (P O ∪ P N ) ∩ (T O ∪
T N ) = ∅, i.e., no name clashes.



304 van der Aalst

The goal of the approach presented in this paper is to
calculate when it is possible to migrate instances (i.e.,
cases) from the old workflow to the new workflow. For
this purpose we need a notion of correctness. In this pa-
per we choose a very pragmatic notion of correctness,
a transfer is valid if the state of the case after migration
could have been reached from the initial state.

Definition 3 (Valid transfer). Let PN O = (P O , T O ,

F O ) and PN N = (P N , T N , F N ) be two sound WF-nets
and M a reachable marking of PN O , i.e., iPN O

∗→M in
PN O . A transfer (PN O , M) ⇒ (PN N , M) is valid iff

(i) for all p ∈ P O : M(p) ≥ 1 implies p ∈ P N ,
(ii) iPN N

∗→M in PN N .

The first requirement in Definition 3 states that all
marked places should exist in the new workflow, i.e.,
it is not valid to migrate a case with tokens in places
which are removed from the new WF-net. The second

Fig. 4. An old and a new WF-net: SC = {s2, s3, b, c} and DC =
{s2, s3, b, c}.

Fig. 5. An old and a new WF-net: SC = {s2, s5, s6, s7, b, d, e, g} and DC = {s2, s3, s4, s5, s6, s7, b, c, d, e, f, g}.

requirement states that marking M , i.e., the state of the
case to be migrated, is reachable in the new process.
The latter property shows that it is not valid to end up in
a state not reachable by newly created cases, i.e., cases
starting in marking i .

Consider PN O and PN N shown in Fig. 4. (Ignore
PN O N , SC , and DC .) A case marking place s2 in PN O

can be migrated to PN N , i.e., the transfer (PN O , s2) ⇒
(PN N , s2) is valid. A case marking place s1, s4, or s5
in PN O can also be migrated to PN N while satisfy-
ing the requirements stated in Definition 3. However,
there is no valid transfer for a case marking s3. Fig. 5
shows two other WF-nets. The old WF-net PN O uses
conditional routing. The new WF-net uses parallel rout-
ing. A case marking place s2 in PN O can be migrated
to PN N , i.e., the transfer (PN O , s2) ⇒ (PN N , s2) is
valid. However, there is no valid transfer for a case
marking any of the places s3, s4, s5, and s6. Consider
for example a case with a token in s3. If this case is
migrated to the new WF-net PN N , then there is a dead-
lock. In PN N the marking s3 enables c, but after firing
c the case gets stuck in the state just marking s4. Note
that the state just marking s3 is not reachable in the new
process.

The notion of validity introduced in Definition 3,
guarantees that the essence of soundness is preserved
during the migration. After a valid transfer, the case
can terminate in a state just marking the sink place
and the moment a case terminates all other places are
unmarked.

The goal of this paper is to determine when a transfer
is valid. In principle it is possible to calculate whether a
transfer is valid using standard techniques such as the
reachability graph (cf. Reisig and Rozenberg, 1998).
However, we are looking for more pragmatic criteria.
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In practice, a process can have millions of reachable
states. To classify these states into valid and invalid
requires a complete enumeration of the state space of
the old and the new process. Therefore, there are defi-
nitely computational problems. Moreover, such a brute-
force partitioning of the state space is also very indirect:
The partitioning only relates to the graphical workflow
model in an indirect manner. Therefore, we pursue a
more down-to-earth approach based on change regions.
The change region is the part of the model which is
effected by the change. These change regions are de-
fined in terms of nodes (i.e., tasks, conditions, etc.) in
the workflow model instead of states. This allows for
more intuitive criteria and facilitates a more realistic
implementation.

First we define the static change region. The static
change region is the set of nodes of both the old
and the new process model which are syntactically
involved in the change.

Definition 4 (Static change region). Let PN O =
(P O , T O , F O ) and PN N = (P N , T N , F N ) be two
sound WF-nets. The static change region in the con-
text of a change from PN O to PN N is the set SC =⋃

(x,y)∈X {x, y} where X = (F O \ F N ) ∪ (F N \ F O ).

The static change region is calculated by compar-
ing the flow relations of both nets, i.e., all arcs
which are removed or added are recorded. The set
of all nodes (i.e., places and transitions) linked to
an arc which is added or removed constitutes the
static change region. Note that the change region
consists of nodes in both the old and the new
workflow. Definition 4 compares arcs rather than
nodes. However, as the following property shows, all
nodes added or deleted appear in the static change
region.

Property 1. Let PN O , PN N , and SC be defined
in Definition 4. ((P O ∪ T O ) \ (P N ∪ T N )) ∪ ((P N ∪
T N ) \ (P O ∪ T O )) ⊆ SC .

Proof: Let x ∈ (P O ∪ T O ) \ (P N ∪ T N ). PN O is
connected. Therefore, there is a y ∈ P O ∪ T O such
that (x, y) ∈ F O or (y, x) ∈ F O . Clearly, (x, y) 	∈ F N

and (y, x) 	∈ F N because x 	∈ P N ∪ T N . Hence,
(x, y) ∈ F O \ F N or (y, x) ∈ F O \ F N . Therefore,
x ∈ SC . Similarly, it can be shown that x ∈ SC if
x ∈ (P N ∪ T N ) \ (P O ∪ T O ). �

Consider PN O and PN N shown in Fig. 4. For these
two WF-nets SC = {s2, s3, b, c}. Nodes s3 and b
have been removed and are part of the change region.
Nodes s2 and c are also in the static change region
because s2• and •c have changed. Projections of the
set SC onto P O and P N are shown in Fig. 4 using
dashed ovals. Fig. 4 also shows the set SC in the
combined WF-net. Let PN O and PN N be an old and
a new WF-net respectively. The combined WF-net is
a WF-net denoted as PN O N = (P O N , T O N , F O N )
and defined as follows: PN O N = PN O ∪ PN N . The
union of two Petri nets is defined in Appendix A. It is
easy to see that PN O N is a WF-net.

Property 2. Let PN O and PN N be two WF-nets such
that iPN O = iPN N and oPN O = oPN N . PN O N = PN O ∪
PN N is a WF-net.

Proof: iPN O N = iPN O = iPN N is a source place since
it cannot have ingoing arcs. There are no other places
without any input transitions. Hence iPN O N is a unique
source place. Similarly, oPN O N = oPN O = oPN N is a
unique sink place. Moreover, every node is on a path
from iPN O N to oPN O N because this is the case in either
PN O or PN N . Hence PN O N is a WF-net. �

The combined WF-net contains the union of all nodes
and arcs which appear in any of the two WF-nets.

It is important to note that the calculation of the
static change region is symmetric, i.e., if the roles of
the old and the new WF-net are reversed, the change
region does not change. Consider for example Fig. 5:
SC = {s2, s5, s6, s7, b, d, e, g}. If the roles of the two
nets are reversed, i.e., the parallel routing is changed
into a conditional one, then the static change region is
still SC = {s2, s5, s6, s7, b, d, e, g}.

One might think that as long as the static change
region is unmarked, a migration of the old WF-net
to the new one is valid. Consider for example Fig. 6
where tasks c and f are replaced by j and k, and, sub-
sequently, SC = {s3, s4, s5, s6, c, f, j, k}. Any case
marking only places outside SC , can be migrated with-
out any problems. In fact, even for cases marking s3, s4,
s5, and s6 there is a valid transfer. However, there are
situations were the transfer of a case not marking any of
the places in the change region is invalid. Consider for
example Fig. 5 and a case marking place s3 in PN O .
This state is reachable from the initial state s1 of PN O

and s3 is not part of SC = {s2, s5, s6, s7, b, d, e, g}.
Although the case is not marking any of the places in
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Fig. 6. An old and a new WF-net: SC = {s3, s4, s5, s6, c, f, j, k} and DC = {s3, s4, s5, s6, c, f, j, k}.

the change region, the transfer is not valid. Transferring
the token in s3 from PN O to PN N results in a marking
not reachable from the initial state s1 of PN N . This
example shows that the static change region is not a
good characterization of the part of the WF-net which
should be unmarked to allow for a valid transfer. This
problem is addressed in the next section.

4. Dynamic Change: The Solution

The static change region introduced in the previous
section is a very elegant and tangible notion. For read-
ers familiar with the UNIX operating system; the static
change region is comparable to the diff program which
calculates the differences between two UNIX files. It
is quite straightforward to build a small application
program which calculates the static change region of
two workflow process definition specified using a given
workflow management system. However, as was illus-
trated using Fig. 5, there are situations where an un-
marked static change region does not guarantee a valid
transfer. In this section we present an algorithm which
calculates a change region which guarantees that any
transfer is valid as long as the change region is un-
marked. We will use the term dynamic change region
for this region. We will prove that the dynamic change
region provides a sufficient condition for validity, i.e.,
any case not marking the dynamic change region can
be transferred without jeopardizing the correctness cri-
teria mentioned. The dynamic change region does not
provide a necessary condition for validity: this is an in-
herit consequence of the fact that we want a syntactical
criterion rather than a criterion based on the explicit

enumeration of the state space.
The calculation of the dynamic change region DC

starts from SC and continues to extend this set until
certain syntactical requirements are met. The algorithm
uses the combined WF-net and forms components (i.e.,
locally connected change regions) which correspond
to sound “sub-WF-nets”.

Definition 5 (Dynamic change region). Let PN O =
(P O , T O , F O ) and PN N = (P N , T N , F N ) be two
sound WF-nets and letPN O N = (P O N , T O N , F O N ) be
the combined WF-net, i.e., PN O N = PN O ∪ PN N and
iPN O N = iPN O = iPN N and oPN O N = oPN O = oPN N .
SC is the static change region. The dynamic change
region DC is calculated by the following algorithm.

Algorithm 1 (Dynamic Change Region Generation
Algorithm)

begin
01. DC := ∅
02. X := SC
03. while DC 	= X do

begin
04. DC := X
05. partition X into X1, X2, . . . ,Xn such that

(a) Xi ∩ X j = ∅ for all 1 ≤ i < j ≤ n
(b) X = ⋃

1≤i≤n Xi

(c) PN O N |Xi is connected for all
1 ≤ i ≤ n

(d) (•Xi ) ∩ X j = ∅ and (Xi•) ∩ X j = ∅
for all 1 ≤ i < j ≤ n

06. for k := 1..n do
07. for a ∈ (Xk) do
08. for b ∈ ((Xk)\{a}) do
09. for c ∈ (P O N ∪ T O N ) do
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begin
10. for (C1 ∈ paths(a, c)) ∧

(C2 ∈ paths(b, c)) ∧
(α(C1) ∩ α(C2)) = {c} do

11. X = X ∪ α(C1)
∪ α(C2)

12. for (C1 ∈ paths(c, a)) ∧
(C2 ∈ paths(c, b)) ∧
(α(C1) ∩ α(C2)) = {c} do

13. X = X ∪ α(C1) ∪ α(C2)
end

14. X = X ∪ (
⋃

x∈X
•x∩X 	=∅

•x) ∪ (
⋃

x∈X
x•∩X 	=∅

x•)

end
15. output DC
end

The algorithm initializes X as the set of nodes in the
static change region, i.e., X = SC . Then using a num-
ber of iterations, this set X is extended. During each
iteration the set X is partitioned into subsets Xi which
correspond to connected components. Note that the
projection of a net PN onto a set of nodes X (PN | x) is
defined in Appendix A. For each component and each
pair of nodes in a component, the algorithm searches
for elementary paths which start or end in these two
nodes and end or start in a single common node c.
Function paths returns the set of all elementary paths
between two given nodes, i.e., paths(a, b) is the set
of elementary paths which start in node a and end in
node b (see Appendix A). The alphabet operator α is a
function which returns the set of nodes on a given path.
If two paths are found which start/end in a and b and
end/start in c and only overlap in c, then all nodes on
both paths are added to the set X (see lines 11 and 13).
If a node x is an element of X and an input (output)
node of x is an element of X , then all input (output)
nodes •x (x•) are also added to X (see line 14 of the
algorithm).

The complexity of the straightforward implemen-
tation of the algorithm is factorial (O(n4(n!)2) for a
workflow with n nodes). From a practical point of
view, its complexity is acceptable because the algo-
rithm only considers the graph structure of the WF-net.
The algorithm does not enumerate all possible states
and is executed only once per change, i.e., there is no
need to compute the dynamic change region for in-
dividual cases. Moreover, a typical workflow consists
of less than 50 nodes. Despite its factorial complexity,
the Dynamic Change Region Generation Algorithm is

tractable for the workflows encountered in practice.
Consider for example Fig. 4. The dynamic change

region coincides with the static change region,
i.e., DC = SC = {s2, s3, b, c}. The dynamic change
region and the static change region also coincide
for the two WF-nets shown in Fig. 6: DC = SC =
{s3, s4, s5, s6, c, f, j, k}. Fig. 5 shows an example of a
situation where both regions do not coincide. The static
change region SC = {s2, s5, s6, s7, b, d, e, g} does
not include s3, s4, c, and f . However, these nodes are
influenced by the change. In PN O only one of the tasks
c and f is executed (conditional routing) while in PN N

both tasks are executed (parallel routing). As was indi-
cated before, it is not possible to migrate cases marking
s3 or s5 without resulting in an invalid transfer. There-
fore, the dynamic change region includes s3, s4, c, and
f , i.e., DC = {s2, s3, s4, s5, s6, s7, b, c, d, e, f, g}.

Figs. 7, 8, and 9 show three additional examples.
For each example both the dynamic and the static
change region are indicated. Fig. 7 shows the addi-
tion of an alternative branch containing tasks e and
f . The static change region SC = {s2, s4, s6, e, f }
only addresses the places s2 and s4 in PN O . The
dynamic change region also includes b, s3, and c,

Fig. 7. An old and a new WF-net: SC = {s2, s4, s6, e, f } and DC =
{s2, s3, s4, s6, b, c, e, f }.

Fig. 8. An old and a new WF-net: SC = {s6, s7, s8, b, c, e, f } and
DC = {s3, s6, s7, s8, b, c, e, f }.
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Fig. 9. An old and a new WF-net: SC = {s2, s4, e} and DC =
{s2, s3, s4, a, b, c, d, e}.

i.e., DC = {s2, s3, s4, s6, b, c, e, f }. Fig. 8 shows the
addition of a parallel branch containing tasks e and
f . Place s3 is not included in the static change region
SC = {s6, s7, s8, b, c, e, f }. However, it is clear that
s3 also needs to be included. The transfer of a case in
state s3 from PN O to PN N results in a deadlock. There-
fore, place s3 is included in the dynamic change region,
i.e., DC = {s3, s6, s7, s8, b, c, e, f }. Fig. 9 shows the
addition of a feedback loop. This example shows the
effect of line 14 of the algorithm: If a node x is an
element of X and an input (output) node of x is an ele-
ment of X , then all input (output) nodes •x (x•) are also
added to X . Because of this line the tasks a and d are
added to the dynamic change region. Note that the dy-
namic change region DC = {s2, s3, s4, a, b, c, d, e}
is considerably larger than the static change region
SC = {s2, s4, e}.

The following theorem shows that the dynamic
change region calculated by the algorithm can be used
to guarantee the validity of transfers, i.e., if only cases
outside the dynamic change region are transferred, then
any transfer is valid.

Theorem 2 (A sufficient condition for valid transfers).
Let PN N and PN O be sound WF-nets, PN O N =
PN O ∪ PN N , and let DC be the dynamic change
region. For any reachable marking M of PN O not
marking the dynamic change region, i.e., iPN O

∗→M in
PN O and M(p) = 0 for any p ∈ DC ∩ P O , a transfer
(PN O , M) ⇒ (PN N , M) is valid.

Proof: See Appendix B �

Consider for example Fig. 6. Theorem 2 guarantees
that a case marking place s2 can be transferred from
PN O to PN N and vice versa. Note that, just like
the static change region, the dynamic change region
is symmetric. The result of the algorithm does not

depend on the role of PN O and PN N : The two roles
can be reversed without changing the outcome of the
algorithm. Also consider the other examples shown in
Figs. 4, 5, 7, 8, and 9. If the dynamic change region
indicated in either PN O or PN N is unmarked, a valid
transfer is possible.

The examples given also indicate that Theorem 2
provides a sufficient but not necessary condition. Con-
sider for example Fig. 6. The dynamic change region
includes s3, s4, s5, and s6. However, a transfer from
any of these places is valid. The markings with in single
token in s3, s4, s5, or s6 are reachable from s1 in both
PN O and PN N . The following theorem gives a weaker
condition for valid transfers. This theorem is based on
the observation that only the internal places inside the
dynamic change region may endanger the validity of
the transfer. Places on the border of the dynamic change
region, i.e., places connected to transitions outside DC ,
can be marked without compromising the validity of the
transfer.

Theorem 3 (A weaker condition for valid trans-
fers). Let PN N and PN O be sound WF-nets,
PN O N = PN O ∪ PN N , and let DC be the dynamic
change region. For any reachable marking M of PN O

not marking the internal places of the dynamic change
region, i.e., iPN O

∗→M in PN O and M(p) = 0 for any
p ∈ {x ∈ DC ∩ P O | (•x) ∪ (x•) ⊆ DC}, a transfer
(PN O , M) ⇒ (PN N , M) is valid.

Proof: See Appendix B. �

This theorem shows that we can strengthen the re-
sult stated in Theorem 2 quite easily. The set of
places considered in Theorem 3 is called the mini-
mal change region. The minimal change region MC is
defined as follows: MC = {p ∈ DC | (•x) ∪ (x•) ⊆
DC}. The minimal change region includes all nodes
of the dynamic change region except the so-called
border places. Note that the minimal change region
may be smaller that the static change region. Consider
for example Fig. 4: SC = {s2, s3, b, c} and MC =
{s3, b}. The minimal change regions of the exam-
ples shown in Figs. 5, 6, 7, 8, and 9 are MC =
{s3, s4, s5, s6, b, c, d, e, f, g} (Fig. 5: s2 and s7 are
removed), MC = {c, f, j, k} (Fig. 6: all places are
removed), MC = {s3, s6, b, c, e, f } (Fig. 7: s2 and
s4 are removed), MC = {s3, s6, s7, s8, e, f } (Fig. 8:
b and c are removed), and MC = {s2, s3, s4, b, c, e}
(Fig. 8: a and d are removed) respectively.
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In Section 1, Fig. 1 was used to illustrate the dy-
namic change problem. We did not refer to this exam-
ple in this section because the place identifiers used
in both WF-nets are different. The places in both nets
have been named different to avoid confusion while
explaining the dynamic change problem. However, it
is clear that s1 and p1 are in essence the same place
because their interconnection structures are the same.
The same holds for s5 and p6, s2 and p2, s4 and p5.
For the remaining places the correspondence is less
clear. Let us rename p1 to s1, p2 to s2, p5 to s4,
and p6 to s5 and calculate SC , DC , MC . The static
change region SC consists of the following nodes:
p3, p4, s3, prepare shipment, send goods, send bill,
and record shipment. The dynamic change region
DC consists of p3, p4, s2, s3, s4, prepare shipment,
send goods, send bill, and record shipment. The min-
imal change region MC consists of p3, p4, s2, s3, s4,
send goods and send bill.

Finally we illustrate the results using the complaint
processing example introduced in Section 2.1. Fig. 10
shows three potential changes. The first change cor-
responds to the removal of task no processing. As-
suming this change, the static change region SC con-
sists of the following nodes: c4, c6, and no processing.
The dynamic change region DC coincides with the
static change region. The minimal change region MC
consists of only no processing. Hence any transfer
from the WF-net with task no processing to the net
without no processing and vice versa is valid. The

Fig. 10. Three potential changes.

second change corresponds to the addition of an
alternative task email questionnaire. Assuming this
change, the static change region SC consists of the
following nodes: c1, c3, and email questionnaire.
The dynamic change region DC coincides with
SC . The minimal change region MC consists of
only the newly added task. Again any transfer is
valid. The third change is less harmless. If pro-
cess complaint is connected directly to c6 and the
nodes c8, c9, check processing, processing OK, and
processing NOK are removed, then the resulting net
is a sound WF-net. Assuming this change, the static
change region SC consists of the following nodes:
c6, c7, c8, c9, process complaint, check processing,
processing OK, and processing NOK. The dynamic
change region DC encompasses all nodes except
i and o. The minimal change region MC con-
sists of all nodes in-between register and archive.
Hence only transfers from state i or o are guaran-
teed to be valid based on the minimal/dynamic change
region.

5. Related Work on Dynamic Change

There are many similarities between dynamic change
in the workflow domain and schema evolution in
the database domain. As the requirements of database
applications change over time, the definition of the
schema, i.e., the structure of the data elements stored
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in the database, is changed. Schema evolution has
been an active field of research in the last decade
(mainly in the field of object-oriented databases, cf.
Bertino and Martino, 1993) and has resulted in tech-
niques and tools that partially support the transfor-
mation of data from one database schema to another.
Although dynamic change and schema evolution are
similar, there are some additional complications in case
of dynamic change. First, as was shown in the exam-
ple of Fig. 1, it is not always possible to transfer a
case. Second, it is not acceptable to shut down the
system, transfer all cases, and restart using the new
procedure. Cases should be migrated while the sys-
tem is running. Finally, dynamic change may introduce
deadlocks and livelocks. The solutions provided by to-
day’s object-oriented databases do not deal with these
complications. Therefore, we need new concepts and
techniques.

Several researchers have worked on problems
related to dynamic change. Ellis, Keddara, and
Rozenberg (1995) propose a technique based on so-
called “change regions.” A change region contains all
parts of a workflow process definition that potentially
cause problems with respect to the transfer of cases. A
change region has two versions; the old situation and
the new situation. In this solution, there is one version
of the complete process which covers the old and the
new situation and changes affect cases as soon as possi-
ble. Parts of the workflow (i.e., change regions) become
inactive after a while, because all old cases have been
handled. This approach has the drawback that the pro-
cess definition can become very complex (unless some
automatic garbage collection is added). Another draw-
back is the fact that the authors do not provide a method
for identifying the change region, i.e., change regions
need to be identified manually. The authors do provide
a notion of change correctness and give specific cir-
cumstances for which this is guaranteed. In Ellis and
Keddara (2000a), the authors improve their approach
by introducing jumpers. A jumper moves a case from
the old workflow to the new workflow. The jump is post-
poned if for a state no jumper is available. Again, the
authors do not give a concrete technique for the trans-
fer of cases, i.e., jumpers are added manually. In Ellis
and Keddara (2000b) and Keddara (1999), Keddara and
Ellis present a language to support dynamic evolution
within workflow systems (ML-DEWS). Based on the
different modalities of change, the authors give a spe-
cial purpose meta-language geared to model the work-
flow of change. Agostini and De Michelis (2000) pro-

pose a technique for the automatic transfer of cases
from an old process definition to a new process defi-
nition and also give criteria for determining whether a
transfer is possible. The approach is interesting since
it automatically computes the states for which it is not
possible to migrate. Consider for example Fig. 1. The
approach presented in Agostini and Michelis (2000)
indicates the necessity to postpone the transfer of run-
ning cases in state [p1, p4]. Unfortunately, the ap-
proach only works for a restricted class of workflows
(e.g., the modeling language does not allow for iter-
ation, although at runtime iteration can be achieved
by backward jumps). A summary of this approach is
given in Michelis and Ellis (1998). Weske (Vossen and
Weske, 1999; Weske, 2000) considers dynamic work-
flow change using a model similar to the model used
by IBM’s MQSeries. In this model there is no iteration
and also alternatives are synchronized. As a result the
control flow is similar to a subclass of Petri nets:
the so-called acyclic marked graphs. By exploiting
these restrictions, relatively simple criteria can be ob-
tained to guarantee the proper migration of an instance
from one schema to another (Weske, 2000). Joeris and
Herzog use linked State Charts to address the prob-
lem of posteriori flexibility (Joeris and Herzog, 1998).
Casati, Ceri, and Pernici (1998) tackle the problem of
dynamic change via a set of transformation rules and
partition the state space into a part that is aborted, a part
that is transferred, a part that is handled the old way,
and parts which are handled by hybrid process defini-
tions (similar to the approach using change regions).
Reichert and Dadam (1998) use a similar approach.
However, semantical issues such as errors introduced
by swapping tasks, skipping tasks, or multiple execu-
tions of a task are not considered. Voorhoeve and Van
der Aalst (1996, 1997) also propose a fixed set of trans-
formation rules to support dynamic change. However,
the rules are not given explicitly at the net level and se-
mantical issues are not considered. Van der Aalst and
Basten (2001) propose an approach based on inheri-
tance. This approach uses a set of generic inheritance-
preserving transformation and transfer rules. Semanti-
cal errors such as the swapping of tasks, the skipping
of tasks, and the multiple execution of tasks can be
avoided by choosing the appropriate inheritance no-
tion, e.g., projection inheritance guarantees that tasks
cannot be skipped by transferring a case from the su-
perclass to the subclass. Unfortunately, the approach is
not useful if the new workflow is not a super or subclass
of the old workflow. The reader interested in workflow
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change and Petri nets is also referred to Aalst, Desel,
and Oberweis (2000b) which contains several papers of
the authors mentioned above. We also refer to the PhD
thesis of Keddara (1999) for a more complete overview
of related work on dynamic change.

The strength of the approach presented in this
paper is that it can be applied in the context of
arbitrary changes. Note that we did not assume the
absence of certain routing constructs (i.e., sequen-
tial, conditional, parallel, and iterative are included) or
restrict change to specific types of changes. Another
feature of the approach is that the change regions are de-
termined based on the structure of the workflow model
(i.e., syntax) rather than the dynamics (i.e., a state space
exploration). This facilitates implementation and yields
change regions which are tangible to end users.

6. Conclusion

This paper provides a pragmatic approach to tackle the
dynamic change bug. Based on the syntactic changes in
the graphical workflow model, three types of change re-
gions are calculated. The static change region incorpo-
rates the parts of the workflow model directly effected
by the change. The dynamic change region extends
the static change region to incorporate the parts of the
workflow model indirectly effected by the change. The
minimal change region reduces the dynamic change re-
gion by eliminating border nodes. The minimal change
region is a subset of the dynamic change region. The
main result of this paper is that cases (i.e., work-
flow instances) which leave the minimal change region
unmarked can be transferred from the old workflow
to the new workflow without creating problems such
as deadlocks and livelocks: Successful termination is
guaranteed.

In the future, we plan to implement the approach
presented in this paper using a commercial workflow
management system. First, we plan to extend the work-
flow management system COSA (Thiel/Ley/COSA So-
lutions) with a feature to calculate the minimal change
region and to enact valid transfers. This extension of
COSA is quite straightforward since COSA is based
on Petri nets and provides an API to remove and cre-
ate cases in any state in any workflow. Second, we
plan to realize the same functionality using other work-
flow management systems. Staffware (Staffware plc)
is an example of another system we use in our labo-
ratory. Implementation of this feature in Staffware is

less straightforward because Staffware is not based on
Petri nets and it is not known whether the required
API is provided. Other candidates for realizing our
approach are Verve (Verve Inc.) and i-Flow (Fujitsu
Software Corporation). Both systems offer extensive
API’s.

Appendix A: Petri Nets

The classical Petri net (Desel and Esparza, 1995;
Murata, 1998; Reisig and Rozenberg, 1998) is a
directed bipartite graph with two node types called
places and transitions. The nodes are connected via
directed arcs. Connections between two nodes of the
same type are not allowed. Places are represented by
circles and transitions by rectangles.

Definition 6 (Petri net). A Petri net is a triple
(P, T, F):

– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = ∅),
– F ⊆ (P × T ) ∪ (T × P) is a set of arcs (flow rela-

tion)

A place p is called an input place of a transition t iff
there exists a directed arc from p to t . Place p is called
an output place of transition t iff there exists a directed
arc from t to p. We use •t to denote the set of input
places for a transition t . The notations t•, •p and p•
have similar meanings, e.g., p• is the set of transitions
sharing p as an input place. Note that we do not consider
multiple arcs from one node to another. In the context
of workflow procedures it makes no sense to have other
weights, because places correspond to conditions.

To illustrate there concepts we consider the two
Petri nets shown in Fig. 1. The Petri net on the left
has four transitions and five places. The Petri net on
the right has four transitions and six places. Transition
prepare shipment in the left model has one input place
and two output places. Note that p1 and s1 are source
places, i.e., places without any input transition. Places
s5 and p6 are sink places.

At any time a place contains zero or more to-
kens, drawn as black dots. The state, often referred
to as marking, is the distribution of tokens over
places, i.e., M ∈ P → N. We will represent a state as
follows: 1p1 + 2p2 + 1p3 + 0p4 is the state with one
token in place p1, two tokens in p2, one token in p3

and no tokens in p4. We can also represent this state
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as follows: p1 + 2p2 + p3. To compare states we de-
fine a partial ordering. For any two states M1 and M2,
M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p).

The number of tokens may change during the exe-
cution of the net. Transitions are the active components
in a Petri net: they change the state of the net according
to the following firing rule:

(1) A transition t is said to be enabled iff each input
place p of t contains at least one token.

(2) An enabled transition may fire. If transition t fires,
then t consumes one token from each input place p
of t and produces one token for each output place
p of t .

Given a Petri net (P, T, F) and a state M1, we have the
following notations:

– M1
t→ M2: transition t is enabled in state M1 and

firing t in M1 results in state M2

– M1 → M2: there is a transition t such that M1
t→ M2

– M1
σ→ Mn: the firing sequence σ = t1t2t3 . . . tn−1

leads from state M1 to state Mn via a (possibly
empty) set of intermediate states M2, . . . , Mn−1, i.e.,
M1

t1→ M2
t2→ · · · tn−1→ Mn

A state Mn is called reachable from M1 (notation
M1

∗→ Mn) iff there is a firing sequence σ such that
M1

σ→ Mn . Note that the empty firing sequence is also
allowed, i.e., M1

∗→ M1.
We use (PN , M) to denote a Petri net PN with

an initial state M . A state M ′ is a reachable state of
(PN , M) iff M

∗→ M ′.
Consider the sequential Petri net shown in Fig. 1

(i.e., the model on the right). If initially only place s1
contains a token, only transition prepare shipment is
enabled. Firing this transition results in a state with
just a token in s2, etc. Starting from the state with a to-
ken in s1 five states are reachable. The parallel Petri net
shown in Fig. 1 has six reachable states when starting
in the state with a token in p1. First transition pre-
pare shipment fires resulting in the state with a token
in both p2 and p3. From this state both send goods and
send bill are enabled.

Let us define some standard properties for Petri
nets. First, we define properties related to the dynamics
of a Petri net, then we give some structural properties.

Definition 7 (Live). A Petri net (PN , M) is live iff,
for every reachable state M ′ and every transition t there
is a state M ′′ reachable from M ′ which enables t .

A Petri net is structurally live if there exists an initial
state such that the net is live. None of the nets shown
in Fig. 1 is structurally live.

Definition 8 (Bounded, safe). A Petri net (PN , M) is
bounded iff for each place p there is a natural number n
such that for every reachable state the number of tokens
in p is less than n. The net is safe iff for each place the
maximum number of tokens does not exceed 1.

A Petri net is structurally bounded if the net is bounded
for any initially state. Both nets shown in Fig. 1 are
structurally bounded.

Definition 9 (Well-formed). A Petri net PN is well-
formed iff there is a state M such that (PN , M) is live
and bounded.

Paths connect nodes by a sequence of arcs.

Definition 10 (Path, Elementary, Conflict-free). Let
PN be a Petri net. A path C from a node n1 to a
node nk is a sequence 〈n1, n2, . . . , nk〉 such that
〈ni , ni+1〉 ∈ F for 1 ≤ i ≤ k − 1. C is elementary iff,
for any two nodes ni and n j on C, i 	= j ⇒ ni 	= n j .
C is conflict-free iff, for any place n j on C and any
transition ni on C , j 	= i − 1 ⇒ n j 	∈ •ni .

For convenience, we introduce the alphabet opera-
tor α on paths. If C = 〈n1, n2, . . . , nk〉, then α(C) =
{n1, n2, . . . , nk}. Moreover, we define paths to be the
function which returns the set of all elementary paths
between two given nodes, i.e., paths (a, b) is the set
of elementary paths which start in node a and end in
node b.

Definition 11 (Strongly connected). A Petri net is
strongly connected iff, for every pair of nodes (i.e.,
places and transitions) x and y, there is a path leading
from x to y.

Definition 12 (Free-choice). A Petri net is a free-
choice Petri net iff, for every two transitions t1 and t2,
•t1 ∩ •t2 	= ∅ implies •t1 = •t2.

Definition 13 (State machine). A Petri net is state
machine iff each transition has exactly one input and
one output place.

Definition 14 (S-component). A subnet PN s =
(Ps, Ts, Fs) is called an S-component of a Petri net
PN = (P, T, F) if Ps ⊆ P , Ts ⊆ T , Fs ⊆ F , PN s is
strongly connected, PN s is a state machine, and for
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every q ∈ Ps and t ∈ T : (q, t) ∈ F ⇒ (q, t) ∈ Fs and
(t, q) ∈ F ⇒ (t, q) ∈ Fs .

Definition 15 (S-coverable). A Petri net is S-
coverable iff for any node there exist an S-component
which contains this node.

See Desel and Esparza (1995) and Reisig and
Rozenberg (1998) for a more elaborate introduction to
these standard notions. In addition to these standard
notions we also define the some operators on nets,
i.e., the union of two nets, the subnet notion, and the
projection of a net onto a set of places and transitions.

Definition 16 (Union, subnet). Let PN 1 = (P1, T1,

F1) and PN 2 = (P2, T2, F2) be two Petri nets. The
union of PN 1 and PN 2 is a Petri net PN PN1∪PN2 =
PN1 ∪ PN2, where PPN1∪PN2 = P1 ∪ P2, TPN1 ∪ PN2 =
T1 ∪ T2, and FPN1 ∪ PN2 = F1 ∪ F2. PN 1 is a subnet of
PN 2, denoted as PN 1 ⊆ PN2, iff P1 ⊆ P2, T1 ⊆ T2,
and F1 ⊆ F2.

Definition 17 (Projection). Let PN = (P, T, F) a
Petri net and X ⊆ P ∪ T . The projection of PN onto
X is PN |X = (P ∩ X, T ∩ X, F ∩ (X × X )).

The projection of a Petri net onto a set of nodes in-
cludes all connections between these nodes, i.e., if
two nodes are connected in PN and are both in-
cluded in X , then these nodes are also connected in
PN |X . Note that, by definition, PN |X is a subnet of
PN .

Appendix B: Proof of Theorems 2 and 3

In this appendix we will show that the dynamic change
region indeed provides a criterion which is sufficient to
guarantee the validity of transfers. The essence of the
proof uses the fact that each component Xi identified
by the algorithm is similar to a sound WF-net, i.e., a
connected set of nodes with one unique source node
and one unique sink node whose composite behavior
is comparable to a single transition. To prove the
central theorem of this paper we need to introduce
components and source and sink nodes.

Definition 18 (Source and sink nodes). Let
PN = (P, T, F) be a Petri net and X ⊆ P ∪ T .
source(PN , X ) is the set of source nodes of X
and is defined as follows: source(PN , X ) = {x ∈
X | • x ∩ X = ∅}. sink (PN , X ) is the set of

sink nodes of X and is defined as follows: sink
(PN , X ) = {x ∈ X | x • ∩ X = ∅}.
A source node is either a node without any input nodes
or a node with only external input nodes. Consider for
example Fig. 4. Place s2 is the only source node of
SC in PN O . A sink node is either a node without any
output nodes or a node with only external output nodes.
Consider for example Fig. 9. Place s2 is the only sink
node of SC in PN N . Both s2 and s4 are source and
sink nodes of SC in PN O .

Based on the notions of source and sink nodes we
define components.

Definition 19 (Component). Let PN = (P, T, F) be
a Petri net and X ⊆ P ∪ T . X is a component of PN
if and only if:

(i) source(PN , X ) is a singleton, i.e., there is an a such
that {a} = source(PN , X ),

(ii) sink(PN , X ) is a singleton, i.e., there is a b such
that {b} = sink(PN , X ),

(iii) for each x ∈ X : x is on a directed path from a to b,
(iv) for each elementary path C from a to b (i.e., C ∈

paths(a, b)): α(C) ⊆ X .

Components are similar to WF-nets embedded in a
larger Petri net. However, in contrast to WF-nets, the
source/sink node can be a transition instead of a place.

In line 5 of the algorithm the set X is partitioned
into subsets Xi . The goal of the algorithm is to
extend X such that these subsets correspond to com-
ponents. The following lemma lists eight properties
of the Xi components constructed by the algorithm.
These properties will be used in the proof of Theorem 2.

Lemma 1. Let PN N and PN O be sound WF-nets,
PN O N = PN O ∪ PN N , and let DC be the dynamic
change region. Let DC be partitioned into X1, X2,

. . . , Xn such that:

(a) Xi ∩ X j = ∅ for all 1 ≤ i < j ≤ n
(b) DC = ⋃

1≤i≤n Xi

(c) PN O N |Xi is connected for all 1 ≤ i ≤ n
(d) (•Xi ) ∩ X j = ∅ and (Xi•) ∩ X j = ∅ for all 1 ≤

i < j ≤ n

Such partitioning always exists and is unique. The par-
titioning has the following properties:

(e) For all 1 ≤ i ≤ n: Xi is a component of PN O N .
( f ) For all 1 ≤ i ≤ n: Xi ∩ (P O ∪ T O ) is a component

of PN O .
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(g) For all 1 ≤ i ≤ n: Xi ∩ (P N ∪ T N ) is a component
of PN N .

(h) For all 1 ≤ i ≤ n: source(PN ON , Xi ) = source
(PN O , Xi ∩ (P O ∪ T O )) = source (PN N , Xi ∩
(P N ∪ T N )) and sink(PN ON , Xi ) = sink(PN O ,

Xi ∩ (P O ∪ T O )) =
sink (PN N , Xi∩ (P N ∪ T N )).

Proof: First we prove that DC can be partitioned in
into X1, X2, . . . , Xn and that this partitioning is unique.
Partition DC into singletons X1, X2, . . . , Xm . Such a
partitioning satisfies properties (a), (b), and (c). If the
partitioning does not satisfy property (d), then there is
an i and j such that there is an arc from a node in Xi

to a node in X j . If this is the case, then join Xi and X j .
Clearly the nodes Xi ∪ X j are connected. Then repeat
the procedure until (d) holds. Note that the existence
of such a partition is used in line 5 of the algorithm.

It remains to be proven that properties (e), (f ), (g),
and (h) hold. We will prove these properties for a given
set of nodes Xi (1 ≤ i ≤ n) identified in the partition-
ing.

The algorithm stops if no new nodes are added in
lines 6 through 14. This implies that at the end:

(i) For all a ∈ Xi , b ∈ Xi \ {a}, c ∈ P ON ∪ T ON ,
C1 ∈ paths(a, c), C2 ∈ paths(b, c) such that
α(C1) ∩ α(C2) = {c}: α(C1) ∪ α(C2) ⊆ Xi .

(ii) For all a ∈ Xi , b ∈ Xi \ {a}, c ∈ P ON ∪ T ON ,
C1 ∈ paths(c, a), C2 ∈ paths(c, b) such that
α(C1) ∩ α(C2) = {c} : α(C1) ∪ α(C2) ⊆ Xi .

(iii) For all x ∈ Xi such that •x ∩ Xi 	= ∅ : •x ⊆ Xi ,
i.e., •x 	⊆ Xi implies x ∈ source(PN ON , Xi ).

(iv) For all x ∈ Xi such that x• ∩ Xi 	= ∅ : x• ⊆ Xi ,
i.e., x• 	⊆ Xi implies x ∈ sink(PN ON , Xi ).

The first two observations follow directly from the
algorithm. The latter two are the result of line 14 in
the algorithm and property (d). These observations are
used to prove the remaining properties.

Property (e). First we prove that source (PN ON , Xi )
is a singleton. There is at least one source node. If
Xi contains iPN O N , then iPN O N is a source node. If Xi

does not contain iPN O N , then there is a directed path
from iPN O N to a node in Xi . Consider the first node of
Xi on this path. Clearly this node is a source node
of Xi (use Property (iii)). There cannot be two source
nodes. Suppose that both a and b are source nodes
of Xi and a 	= b. There is a directed elementary path
from iPN O N to a and from iPN O N to b. Let c be the last

common node of these two paths, i.e., walk backwards
on the directed elementary path from iPN O N to a until
one encounters a node also appearing in the other path.
Based on these two paths and the last common node,
we define two subpaths: an elementary directed path
C1 from c to a, and an elementary directed path C2

from c to b. Clearly, (α(C1) ∩ α(C2)) = {c}. Hence,
(α(C1) ∪ α(C2)) ⊆ Xi (use Observation (i) and {c} ⊆
Xi ). However, since both a and b are source nodes of
Xi , there cannot be any input nodes from within Xi .
Hence, both paths cannot contain multiple nodes, i.e.,
c = a and c = b. This contradicts the assumption that
a 	= b and shows that there can only be one source
node.

Similarly, it can be shown that sink(PN ON , Xi ) is a
singleton.

Let {a} = source(PN ON , Xi ), {b} = sink(PN O N ,

Xi ), and x ∈ Xi . We need to prove that x is on a di-
rected path from a to b. Let C1 be a directed path from
iPN O N to x and C2 be a directed path from x to oPN ON .
Such paths exist since PN ON is a WF-net. Let y be the
first element of Xi on C1. Clearly y = a (use Observa-
tion (iii)). Hence, there is a directed path from a to x .
Similarly, it can be shown that there is a directed path
from x to b.

Let C be an elementary path from a to b. Observa-
tion (i) implies that α(C) ⊆ Xi (b = c).

Property (f). Let a be the unique source node of Xi

in PN ON , i.e., {a} = source (PN ON , Xi ). a is also a
node of PN O : either a = iPN ON which also appears in
PN O or there is a node x not in DC such that x ∈ •a.
In the latter case x is not in the static change region
(SC ⊆ DC) and therefore the set of nodes connected
to x did not change. Hence a is a node of PN O . Since
PN O is a subnet of PN ON , a is also a source node
of Xi in PN O . Note that only by adding new connec-
tions source nodes can become non-source nodes. Sim-
ilarly, we can show that the unique sink node b of Xi in
PN ON , i.e., {b} = sink(PN ON , Xi ), is also a sink node
of PN O .

a is a source node of Xi in PN O and b is a sink
node of Xi in PN O . Before we show that these two
nodes are unique, we focus on the other two properties
a component needs to satisfy.

Every node x in Xi is on a path from a to b in PN ON

(see proof of Property (e)). If x ∈ Xi is a node of PN O ,
then x is on a path from a to b in PN O . Let C1 be a
directed path from iPN O to x and C2 be a directed path
from x to oPN O in PN O . Such paths exist since PN O is
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a WF-net and both paths are also paths of PN ON . Is is
easy to show that a must appear on path C1 (consider
the first node of Xi ; this must be a) and b must appear
on C2.

Let C be a directed path from a to b in PN O . C
is also a path in PN ON . Clearly, α(C) ⊆ Xi (see proof
of Property (e)). Since C be a directed path in PN O ,
α(C) ⊆ Xi ∩ (P O ∪ T O ).

It remains to be proven that a and b are unique.
Suppose there is an additional source node x , i.e., x ∈
source(PN O , Xi ∩ (P O ∪ T O )) and x 	= a. Since x is
on a directed path from a to b contained in Xi ∩ (P O ∪
T O ), x cannot be source node, i.e., a is the only source
node. Similarly, it can be shown that b is unique.

Based on these observations we conclude that Xi ∩
(P O ∪ T O ) is a component of PN O .

Property (g). The proof of this property is identical to
the proof of Property (f ).

Property (h). This property follows directly from the
proof of properties (f ) and (g). �

Based on the eight properties listed in Lemma 1, we
prove Theorem 2. This theorem states that the dynamic
change region provides a sufficient condition for valid
transfers.

Theorem (A sufficient condition for valid transfers).
Let PN N and PN O be sound WF-nets, PN ON =
PN O ∪ PN N , and let DC be the dynamic change
region. For any reachable marking M of PN O not
marking the dynamic change region, i.e., iPN O

∗→M in
PN O and M(p) = 0 for any p ∈ DC ∩ P O , a transfer
(PN O , M) ⇒ (PN N , M) is valid.

Proof: Let M be such that iPN O
∗→ M in PN O and

M(p) = 0 for any p ∈ DC ∩ P O .
First, we prove that for all p ∈ P O : M(p) ≥ 1 im-

plies p ∈ P N . If p ∈ P O and M(p) ≥ 1, then p 	∈ DC .
Hence, p 	∈ SC (SC ⊆ DC). Property 1 shows that
(P O ∪ T O ) \ (P N ∪ T N ) ⊆ SC . Therefore, p ∈ P N .

Finally, we prove that iPN N
∗→ M in PN N .

Lemma 1 shows that DC can be partitioned into
X1, X2, . . . , Xn such that Xi is a component of
PN ON , Xi ∩ (P O ∪ T O ) is a component of PN O , and
Xi ∩ (P N ∪ T N ) is a component of PN N . Consider an
arbitrary component Xi with {a} = source(PN ON , Xi )
and {b} = sink(PN ON , Xi ). If both a and b are
places, then PN ON |Xi , PN O |Xi , and PN N |Xi are

WF-nets. This follows directly from Definition 6.
Since PN ON |Xi , PN O |Xi , and PN N |Xi are subnets of
sound WF-nets, these subnets are also sound. (See
Theorem 3 in Aalst (2000).) Note that the soundness
of each subnet heavily depends on the safeness of
the enclosing WF-net. Since the subnets are sound
their behavior corresponds to a single transition tv

connecting a and b. Now consider firing sequence σ

which leads to M in PN O , i.e., iPN O
σ→M . Consider

the transitions of Xi which occur in σ . These transition
form complete subsequences of the embedded WF-net
PN O |Xi , i.e., since no tokens are left in Xi every
subsequence corresponds one firing of the virtual
transition tv . Each firing of this virtual transition can
be mimicked by a firing sequence of the embedded
WF-net PN N |Xi in PN N . This way occurrences of
transitions in Xi ∩ T O can be replaced by transitions
in Xi ∩ T N . This assumes that both a and b are
places. However, the same reasoning can be applied
to components where a and/or b are transitions. Such
a transition-bordered WF-net can be transformed into
a sound WF-net by adding a source and/or sink place.
This can be repeated for each of the components.
Therefore, σ can be transformed into a firing sequence
σ ′ which leads to M in PN N , i.e., iPN O

σ ′→M . Hence,
iPN N

∗→M in PN N . �

Finally we prove Theorem 3.

Theorem (A weaker condition for valid transfers).
Let PN N and PN O be sound WF-nets, PN ON =
PN O ∪ PN N , and let DC be the dynamic change
region. For any reachable marking M of PN O not
marking the internal places of the dynamic change
region, i.e., iPN O

∗→M in PN O and M(p) = 0 for any
p ∈ {x ∈ DC ∩ P O | (•x) ∪ (x•) ⊆ DC}, a transfer
(PN O , M) ⇒ (PN N , M) is valid.

Proof: Compared to Theorem 2 so-called border
places p can be marked while a case is being
transferred. Consider a place p ∈ DC ∩ P O such
that not (•p) ∪ (p•) ⊆ DC , i.e., •p 	⊆ DC or p• 	⊆
DC . If •p 	⊆ DC , then {p} = source(PN ON , Xi ) =
source(PN O , Xi ) = source(PN N , Xi ) of some com-
ponent Xi . Since p appears in PN O and PN N , the
sets of input transitions of p are identical in PN O and
PN N , and PN O |Xi and PN N |Xi have a behavior simi-
lar to a single transition, a transfer of a token in p does
not jeopardize the validity of the transfer. Similarly, a
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token in a place p with p• 	⊆ DC cannot jeopardize
the validity. Hence, if only places outside DC and bor-
der places are marked, then (PN O , M) ⇒ (PN N , M)
is valid. �
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Note

1. Note that there is an overloading of notation: the symbol i is used
to denote both the place i and the state with only one token in
place i (see Appendix A).
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