
Workflow Data Patterns:

Identification, Representation and Tool Support�

Nick Russell1, Arthur H.M. ter Hofstede1,
David Edmond1, and Wil M.P. van der Aalst1,2

1 School of Information Systems, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{n.russell, a.terhofstede, d.edmond}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Workflow systems seek to provide an implementation vehicle
for complex, recurring business processes. Notwithstanding this common
objective, there are a variety of distinct features offered by commercial
workflow management systems. These differences result in significant
variations in the ability of distinct tools to represent and implement
the plethora of requirements that may arise in contemporary business
processes. Many of these requirements recur quite frequently during the
requirements analysis activity for workflow systems and abstractions of
these requirements serve as a useful means of identifying the key com-
ponents of workflow languages. In this paper, we describe a series of
workflow data patterns that aim to capture the various ways in which
data is represented and utilised in workflows. By delineating these pat-
terns in a form that is independent of specific workflow technologies and
modelling languages, we are able to provide a comprehensive treatment
of the workflow data perspective and we subsequently use these patterns
as the basis for a detailed comparison of a number of commercially avail-
able workflow management systems, workflow standards and web-service
composition languages.

1 Introduction

There are a series of concepts that apply to the representation and utilisation
of data within workflow systems. These concepts not only define the manner in
which data in its various forms can be employed within a business process and
the range of informational concepts that a workflow engine is able to capture
but also characterise the interaction of data elements with other workflow and
environmental constructs.

� This work was partially supported by the Australian Research Council under the
Discovery Grant “Expressiveness Comparison and Interchange Facilitation between
Business Process Execution Languages”.

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 353–368, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 N. Russell et al.

Detailed examination of a number of workflow tools and business process
modelling paradigms suggests that the way in which data is structured and
utilised within these tools has a number of common characteristics. Indeed these
characteristics bear striking similarities to the Workflow Patterns [2] and Design
Patterns [5] initiatives in terms of their generic applicability, except in this case
they refer specifically to the data perspective [7] of workflow systems and the
manner in which it interrelates with other workflow perspectives.

The use of a patterns-based approach for illustrating data-related concepts in
workflow systems offers the potential to describe these constructs in a language-
independent way. This ensures that the patterns identified have broad applica-
bility across a wide variety of workflow implementations. It provides the basis
for comparison of data-related capabilities between distinct products and offers
a means of identifying potential areas of new functionality in workflow systems.
In this paper we focus on workflow technology but the results identified apply
to any process-aware information system (PAIS).

1.1 Background and Related Work

Interest in workflow systems has grown dramatically over the past decade and
this has fuelled the development of a multitude of both commercial workflow
engines and research prototypes each with unique features and capabilities. De-
spite attempts by industry bodies such as the Workflow Management Coalition
(www.wfmc.org) and the Object Management Group (www.omg.org) to provide
standards for workflow management systems, there is limited adoption by com-
mercial vendors. Perhaps the most notable shortcoming in this area is the absence
of a common formalism for workflow modelling. A number of possible candidates
have been considered from the areas of process modelling and general systems
design including Petri-Nets [1], Event-Driven Process Chains (EPCs) [11] and
UML Activity Diagrams [4] although none of these have achieved broad usage.

Data modelling in the context of workflow systems is an area that has re-
ceived particularly scant attention. Many of the significant workflow modelling
proposals and prototypes take a uniform approach to data representation and
utilisation. In ADEPT [9], all data elements are assumed to be represented by
global workflow variables. MENTOR [13] proposes that data flow is modelled
via Activity Diagrams linked to the control-flow perspective represented in the
form of State Charts. WASA [8] assumes that data is characterised in the form
of data containers which are passed between workflow activities although the
later WASA2 project [12] supports a more varied range of data objects by lever-
aging underlying CORBA services. INCAs [3] is one of the few initiatives which
proposes a broader range of data representations and interaction facilities.

One of the major impediments to a generic modelling technique is the broad
range of offerings that fall under the “workflow umbrella” [6] – ranging from un-
structured groupware support products through to transaction-oriented produc-
tion workflows – and the inherent difficulty of establishing a conceptual frame-
work that is both suitable and meaningful across the entire range of offerings.
The recent Workflow Patterns initiative [2] has taken an empirical approach

Workflow Data Patterns: Identification, Representation and Tool Support 355

to identifying the major control-flow constructs that are inherent in workflow
systems through a broad survey of process modelling languages and software of-
ferings. The outcomes of this research were a set of twenty patterns characterising
commonly utilised process control structures in workflow systems together with
validation of their applicability through a detailed survey of thirteen commercial
workflow products and two research prototypes. It is interesting to note that this
work has directly influenced tool selection processes, commercial and open-source
workflow systems, and workflow standards (see www.workflowpatterns.com for
details). This paper adopts an approach similar to that in [2] although in this
case, the focus is on the data perspective. One significant advantage of a patterns-
based approach is that it provides a basis for comparison between software offer-
ings without requiring that they share the same conceptual underpinnings. This
paper aims to extend the previous work on Workflow Control Patterns to the
data perspective. It identifies 40 data patterns that recur in workflow systems
and describes a selection of these in detail1. It also examines their use across six
major workflow products, standards and web service composition languages.

2 Workflow and Data Concepts

2.1 Workflow Structure

Before we describe the data perspective in detail, we first present a standard
set of definitions for the various components of a workflow system that we will
utilise throughout this paper. A workflow or workflow model is a description
of a business process in sufficient detail that it is able to be directly executed
by a workflow management system. A workflow model is composed of a number
of tasks which are connected in the form of a directed graph. An executing in-
stance of a workflow model is called a case or process instance. There may be
multiple cases of a particular workflow model running simultaneously, however
each of these is assumed to have an independent existence and they typically
execute without reference to each other. Each invocation of a task that executes
is termed a task instance. A task instance may initiate one or several task in-
stances when it completes. This is illustrated by an arrow from the completing
task to the task being initiated e.g. in Figure 1, task instance B is initiated
when task instance A completes. A task corresponds to a single unit of work.
Four distinct types of task are denoted: atomic, block, multiple-instance and
multiple-instance block. We use the generic term components of a workflow to
refer to all of the tasks that comprise a given workflow model. An atomic task is
one which has a simple, self-contained definition (i.e. one that is not described in
terms of other workflow tasks) and only one instance of the task executes when
it is initiated. A block task is a complex action which has its implementation
described in terms of a sub-workflow. When a block task is started, it passes
control to the first task(s) in its corresponding sub-workflow. This sub-workflow
executes to completion and at its conclusion, it passes control back to the block
1 Readers seeking a comprehensive description of all 40 patterns are referred to [10].

356 N. Russell et al.

use(M)

subworkflow

D

workflow

task

multiple instance taskblock task
pass(M)

def var M

 case

BA

C

YX Z

E

Fig. 1. Components of a workflow

task. E.g. block task C is defined in terms of the sub-workflow comprising tasks,
X, Y and Z. A multiple-instance task is a task that may have multiple distinct
execution instances running concurrently within the same workflow case. Each
of these instances executes independently. Only when a nominated number of
these instances have completed is the task following the multiple instance task
initiated. A multiple-instance block task is a combination of the two previous
constructs and denotes a task that may have multiple distinct execution in-
stances each of which is block structured in nature (i.e. has a corresponding
sub-workflow). The control flow between tasks occurs via the control channel
which is indicated by a solid arrow between tasks. There may also be a distinct
data channel between workflow tasks which provides a means of communicating
data elements between two connected tasks which is illustrated with a broken
(dash-dot) line. The control and data channels may be combined. Where data
elements are passed along a channel between tasks, this is illustrated by the
pass() relation, e.g. in Figure 1 data element M is passed from task instance C
to E. The definition of data elements within the workflow is illustrated by the
def var variable-name phrase. Depending on where this appears, the variable
may have task, block, case or workflow scope indicating the level at which the
data element is bound. The places where a given data element can be accessed
are illustrated by the use() phrase. In the case of workflow, case and block level
data elements, these may be passed between tasks by reference (i.e. the location
rather than the value of the data element is passed). This is indicated through
the use of the & symbol e.g. the pass(&M) phrase indicates that the data element
M is being passed by reference rather than value.

2.2 Data Characterisation

The patterns presented in this paper are intended to be language independent
and do not assume a concrete syntax. In the absence of an agreed workflow

Workflow Data Patterns: Identification, Representation and Tool Support 357

model, the aim is to define them in a form that ensures they are applicable
to the broadest possible range of workflow systems. As such, we use informal
diagrams throughout this paper for illustrating workflow execution instances.
The aim of these diagrams is to illustrate the scope of workflow data and the
manner in which it is passed between various workflow components. They do
not have a formal semantics for the control-flow perspective.

From a data perspective, there are a series of characteristics that occur re-
peatedly in different workflow modelling paradigms. These can be divided into
four distinct groups: data visibility, which relate to the definition and scope of
data elements and the manner in which they can be utilised by various com-
ponents of a workflow process; data interaction, which focus on the manner in
which data is communicated between active elements within and outside of a
workflow; data transfer, which consider the means by which the actual transfer
of data elements occurs between workflow components and describe the vari-
ous mechanisms by which data elements can be passed across the interface of a
workflow component; and data-based routing, which characterise the manner in
which data elements can influence the operation of other aspects of the workflow,
particularly the control flow perspective.

These characteristics are examined in detail in Section 3 and between them,
they form the basis for the identification of 40 patterns relevant to the data per-
spective of PAIS. As validation of the broad applicability of the patterns iden-
tified, their occurrence is examined in three major workflow engines (Staffware,
WebSphere MQ and COSA), a case handling system (FLOWer), a web service
composition language (BPEL4WS) and a workflow standard (XPDL). The re-
sults of these evaluations are presented in Section 4.

3 Data Patterns

3.1 Data Visibility

Within the context of a workflow engine, there are a variety of distinct ways
in which data elements can be defined and utilised. Typically individual data
elements are bound to a specific workflow construct (e.g. a task or a block) and
this binding defines the scope in which the data element can be accessed. More
generally, it also influences the way in which the data element may be used e.g.
to capture production information, to manage control data or for communication
with the external environment. Eight data visibility patterns have been identi-
fied. The second of these, Block Data, is discussed subsequently in further depth.
Lines 1 to 8 of Table 1 provide a complete listing of the data visibility patterns.

Pattern 2 (Block Data)
Description. Block tasks (i.e. tasks which can be described in terms of a cor-
responding sub-workflow) are able to define data elements which are accessible
by each of the components of the corresponding sub-workflow.
Example. All components of the sub-workflow which define the Assess Invest-
ment Risk block task can utilise the security details data element.

358 N. Russell et al.

multiple instance task

B

 workflow

A

subworkflow

D

def var N

use(M,N) use(M,N)use(M,N)

block task

task

 case

YX Z

def var M

C
use(M)

E

Fig. 2. Block level data visibility

Motivation. The manner in which a block task is implemented is usually defined
via its decomposition into a sub-workflow. It is desirable that data elements
available in the context of the undecomposed block task are available to all of
the components that make up the corresponding sub-workflow. Similarly, it is
useful if there is the ability to define new data elements within the context of the
sub-workflow that can be utilised by each of the components during execution.

Figure 2 illustrates both of these scenarios, data element M is declared at the
level of the block task C and is accessible both within the block task instance
and throughout each of the task instances (X, Y and Z) in the corresponding
sub-workflow. Similarly data element N is declared within the context of the
sub-workflow itself and is available to all task instances in the sub-workflow.
Depending on the underlying workflow system, it may also be accessible at the
level of the corresponding block task.
Implementation. The concept of block data is widely supported by workflow
systems and all but one of the offerings examined in this survey which supported
the notion of sub-workflows2 implemented it in some form. Staffware allows sub-
workflows to specify their own data elements and also provides facilities for
parent processes to pass data elements to sub-workflows as formal parameters.
In WebSphere MQ, sub-workflows can specify additional data elements in the
data container that is used for passing data between task instances within the
sub-workflow and restrict their scope to the sub-workflow. FLOWer and COSA
also provide facilities for specifying data elements within a sub-workflow.
Issues. A major consideration in regard to block-structured tasks within a work-
flow is the handling of block data visibility where cascading block decompositions
are supported and data elements are implicitly inherited by sub-workflows. As
an example, in the preceding diagram block data sharing would enable a data
element declared within the context of task C to be utilised by task X, but
2 BPEL4WS which does not directly support sub-workflows is the only exception.

Workflow Data Patterns: Identification, Representation and Tool Support 359

if X were also a block task would this data element also be accessible to task
instances in the sub-workflow corresponding to X?

Solutions. One approach to dealing with this issue adopted by workflow tools
such as Staffware is to only allow one level of block data inheritance by default
i.e. data elements declared in task instance C are implicitly available to X, Y and
Z but not to further sub-workflow decompositions. Where further cascading of
data elements is required, then this must be specifically catered for. COSA allows
a sub-workflow to access all data elements in a parent process and provides for
arbitrary levels of cascading3, however updates to data elements in sub-workflows
are not automatically propagated back to the parent task.

3.2 Data Interaction

Data interaction patterns capture the various ways in which data elements can
be passed between components in a workflow process and how the characteristics
of the individual components can influence the manner in which the trafficking of
data elements occurs. Of particular interest is the distinction between the com-
munication of data between components within a workflow engine as against
the data-oriented interaction of a workflow component with some form of infor-
mation resource or service that operates outside of the context of the workflow
engine (i.e. in the external environment).

In total, 18 data interaction patterns have been identified – six of these relate
to data interaction between internal workflow components and the remaining
twelve describe the various situations where data interaction can occur between
a workflow component and the external environment. The complete listing of
these patterns is presented in lines 9 to 26 of Table 1. In this section, we describe
two internal and one external data interaction patterns in detail.

Pattern 9 (Data Interaction between Tasks)

Description. The ability to communicate data elements between one task in-
stance and another within the same case.

Example. The Determine Fuel Consumption task requires the coordinates de-
termined by the Identify Shortest Route task before it can proceed.

Motivation. The passing of data elements between tasks is a fundamental as-
pect of workflow systems. In many situations, individual tasks execute in their
own distinct address space and do not share significant amounts of data on a
global basis. This necessitates the ability to move commonly used data elements
between distinct tasks as required.

Implementation. All workflow engines examined support the notion of passing
parameters from one task to another however, this may occur in a number of
distinct ways depending on the relationship between the data perspective and
control flow perspective within the workflow. There are three main approaches
as illustrated in Figure 3.

3 Although more than four levels of nesting are not recommended.

360 N. Russell et al.

use(X)

C

use(Y)use(X)use(X,Y)

task

A B
pass(X)

C

A
use(X,Y)

C
use(Y)

def var X
def var Y

Global Shared Data
pass(X,Y) B

use(X)

Integrated Control and Data Channels

use(Y)use(X,Y)

task

pass(Y)A

Distinct Control and Data Channels

pass(Y)

Global Data Store

task

B

Fig. 3. Approaches to data interaction between tasks

– Integrated control and data channels – where both control flow and data
are passed simultaneously between tasks utilising the same channel. In the
example, task B receives the data elements X and Y at exactly the same
time that control is passed to it. Whilst conceptually simple, one of the
disadvantages of this approach to data passing is that it requires all data
elements that may be used some time later in the workflow process to be
passed with the thread of control regardless of whether the next task will
use them or not. E.g. task B does not use data element Y but it is passed to
it because task C will subsequently require access to it.

– Distinct data channels – in which data is passed between workflow tasks via
explicit data channels which are distinct from the process control links within
the workflow design. Under this approach, the coordination of data and con-
trol passing is usually not specifically identified. It is generally assumed that
when control is passed to a task that has incoming data channels, the data
elements specified on these channels will be available at task commencement.

– Global data store – where tasks share the same data elements (typically via
access to globally shared data) and no explicit data passing is required. This
approach to data sharing is based on tasks having shared a priori knowledge
of the naming and location of common data elements. It also assumes that
the implementation is able to deal with potential concurrency issues that
may arise where several task instances seek to access the same data element.

Most of the offerings examined adopt the third strategy. Staffware, FLOWer,
COSA and XPDL all facilitate the passing of data through case-level data repos-
itories accessible by all tasks. BPEL4WS utilises a combination of the first and
third approaches. Variables can be bound to scopes within a process definition
which may encompass a number of tasks, but there is also the ability for mes-
sages to be passed between tasks when control passes from one task to another.
WebSphere MQ adopts the second mechanism with data elements being passed
between tasks in the form of data containers via distinct data channels.
Issues. Where there is no data passing between tasks and a common data
store is utilised by several tasks for communicating data elements, there is the

Workflow Data Patterns: Identification, Representation and Tool Support 361

potential for concurrency problems to arise, particularly if the case involves
parallel execution paths. This may lead to inconsistent results depending on the
task execution sequence that is taken.
Solutions. Concurrency control is handled in a variety of different ways by
the offerings examined in Section 4. FLOWer avoids the problem by only allow-
ing one active user or process that can update data elements in a case at any
time (although other processes and users can access data elements for reading).
BPEL4WS supports serialisable scopes which allow compensation handlers to be
defined for groups of tasks that access the same data elements. A compensation
handler is a procedure that aims to undo or compensate for the effects of the
failure of a task on other tasks that may rely on it or on data that it has af-
fected. Staffware provides the option to utilise an external transaction manager
(Tuxedo) within the context of the workflow cases that it facilitates.

Pattern 12 (Data Interaction – to Multiple Instance Task)
Description. The ability to pass data elements from a preceding task instance
to a subsequent task which is able to support multiple execution instances. This
may involve passing the data elements to all instances of the multiple instance
task or distributing them on a selective basis.
Examples. The New Albums List is passed to the Review Album task and one
task instance is started for each entry on the list. Each of the Review Album task
instances is allocated a distinct entry from the New Albums List to review.
Motivation. Where a task is capable of being invoked multiple times, a means
is required of controlling which data elements are passed to each of the execution
instances. This may involve ensuring that each task instance receives all of the
data elements passed to it (possibly on a shared basis) or distributing the data
elements across each of the execution instances on some predefined basis.
Implementation. There are three potential approaches to passing data ele-
ments to multiple instance tasks as illustrated in Figure 4. As a general rule,
it is possible either to pass a data element to all task instances or to distribute
one item from it (assuming it is a composite data element such as an array or a
set) to each task instance. Indeed the number of task instances that are initiated
may be based on the number of individual items in the composite data element.
The specific approaches are as follows:

– Instance-specific data passed by value – this involves the distribution of a
data element passed by value to task instances on the basis of one item of
the data element per task instance (in the example shown, task instance B1

receives M[1], B2 receives M[2] and so on). As the data element is passed
by value, each task instance receives a copy of the item passed to it in
its own address space. At the conclusion of each of the task instances, the
data element is reassembled from the distributed items and passed to the
subsequent task instance.

– Instance-specific data passed by reference – this scenario is similar to that
described above except that the task instances are passed a reference to a

362 N. Russell et al.

use(M)

use(*M)

use(*M) use(*M[2])

B3

B

use(*M[3])

B2

B1

instances

use(*M)

use(*M)

use(*M)

B3

Passed by Value
Shared Data Storage var M:

Shared Data Passed by Reference

multiple instance task

A

instances

C

A
array M:

..

.....

.....

.....1

4
3
2

A
use(*M)

task

task

pass(M) pass(M) C
task
use(M)

instances

pass(&M)

pass(&M) pass(&M)

task

C
use(*M)

task

multiple instance task

task

multiple instance task

pass(&M)

Instance−Specific Data

use(M[2])

Instance−Specific Data

2

B1
use(*M[1])

Passed by Reference

use(M[3])
3

2B

B

B
use(M[1])

1

Fig. 4. Data interaction approaches for multiple instance tasks

specific item in the data element rather than the value of the item. This
approach obviates the need to reassemble the data element at the conclusion
of the task instances.

– Shared data passed by reference – in this situation all task instances are
passed a reference to the same data element. Whilst this allows all task
instances to access the same data element, it does not address the issue of
concurrency control should one of the task instances amend the value of the
data element (or indeed if it is altered by some other workflow component).

FLOWer provides facilities for instance-specific data to be passed by reference
whereby an array can be passed to a designated multiple instance task and
specific sub-components of it can be mapped to individual task instances. It also
allows for shared data elements to be passed by reference to all task instances.
Issues. Where a task is able to execute multiple times but not all instances
are created at the same point, an issue that arises is whether the values of data
elements are set for all execution instances at the time at which the multiple
instance task is initiated or whether they can be fixed after this occurs but prior
to the actual invocation of the task instance to which they relate.
Solutions. In FLOWer, the Dynamic Plan construct allows the data for indi-
vidual task instances to be specified at any time prior to the actual invocation
of the task. The passing of data elements to specific task instances is handled
via Mapping Array data structures. These can be extended at any time during
the execution of a Dynamic Plan, allowing for new task instances to be created

Workflow Data Patterns: Identification, Representation and Tool Support 363

“on the fly” and the data corresponding to them to be specified at the latest
possible time.

Pattern 16 (Data Interaction – Environment to Task – Pull-Oriented)

Description. The ability of a workflow task to request data elements from
resources or services in the operational environment.

Example. The Determine Cost task must request cattle price data from the
Cattle Market System before it can proceed.

Motivation. Workflow tasks require the means to proactively seek the latest
information from known data sources in the operating environment during their
execution. This may involve accessing the data from a known repository or in-
voking an external service in order to gain access to the required data elements.

Implementation. Distinct workflow engines support this pattern in a variety
of ways however these approaches divide into two categories: explicit integration
mechanisms, where the workflow system provides specific constructs for access-
ing data in the external environment and implicit integration mechanisms, where
access to external data occurs at the level of the programmatic implementations
that make up tasks in the workflow process and is not directly supported by
the workflow engine. Interaction with external data sources typically utilises
interprocess communication (IPC) facilities provided by the operating system
facilities such as message queues or remote procedure calls, or enterprise appli-
cation integration (EAI) mechanisms such as DCOM, CORBA or JMS.

Staffware provides two distinct constructs that support this objective. Au-
tomatic Steps allow external systems to be called (e.g. databases or enterprise
applications) and specific data items to be requested. Scripts allow external pro-
grams to be called either directly at system level or via system interfaces such as
DDE (dynamic data exchange) to access required data elements. FLOWer utilises
Mapping Objects to extract data elements from external databases. COSA has
a number of Tool Agent facilities for requesting data from external applications.
XPDL and BPEL4WS provide facilities for the synchronous request of data from
other web services. In contrast, WebSphere MQ does not provide any facilities
for external integration and requires the underlying programs that implement
workflow tasks to provide these capabilities where they are needed.

Issues. One difficulty with this style of interaction is that it can block progress
of the requesting case if the external application has a long delivery time for the
required information or is temporarily unavailable.

Solutions. The only potential solution to this problem is for the requesting case
not to wait for the requested data (or continue execution after a nominated time-
out) and to implement some form of asynchronous notification of the required
information. The disadvantage of this approach is that it complicates the overall
interaction by requiring the external application to return the required infor-
mation via an alternate path, necessitating the workflow to provide notification
facilities.

364 N. Russell et al.

3.3 Data Transfer Patterns

Data transfer patterns focus on the manner in which the actual transfer of data
elements occurs between one workflow component and another. These patterns
serve as an extension to those presented in Section 3.2 and aim to capture the
various mechanisms by which data elements can be passed across the interface
of a workflow component.

The specific style of data passing that is used in a given scenario depends
on a number of factors including whether the two components share a common
address space for data elements, whether it is intended that a distinct copy of an
element is passed as against a reference to it and whether the component receiv-
ing the data element can expect to have exclusive access to it. These variations
give rise to seven distinct patterns as listed in lines 27 to 33 of Table 1. In this
section, we describe one pattern in detail – Data transfer by value - incoming.

Pattern 27 (Data Transfer by Value – Incoming)
Description. The ability of a workflow component to receive incoming data
elements by value relieving it from the need to have shared names or common
address space with the component(s) from which it receives them.
Example At commencement, the Identify Successful Applicant task receives
values for the required role and salary data elements.
Motivation. Under this scenario, data elements are passed as values between
communicating workflow components. There is no necessity for each workflow
component to utilise a common naming strategy for the data elements or for
components to share access to a common data store in which the data elements
reside. This enables individual components to be written in isolation without
specific knowledge of the manner in which data elements will be passed to them
or the context in which they will be utilised.
Implementation. This approach to data passing is commonly used for commu-
nicating data elements between tasks that do not share a common data store or
wish to share task-level (or block-level) data items. The transfer of data between
workflow components is typically based on the specification of mappings between
them identifying source and target data locations. In this situation, there is no
necessity for common naming or structure of data elements as it is only the data
values that are actually transported between interacting components.

WebSphere MQ utilises this approach to data passing in conjunction with
distinct data channels. Data elements from the originating workflow task in-
stance are coalesced into a data container. A mapping is defined from this data
container to a distinct data container which is transported via the connecting
data channel between the communicating tasks. A second mapping is then de-
fined from the data container on the data channel to a data container in the
receiving task. BPEL4WS provides the option to pass data elements between
activities using messages – an approach which relies on the transfer of data
between workflow components by value. XPDL provides more limited support
for data transfer by value between a block task and sub-workflow. As all data
elements are case level, there is no explicit data passing between tasks.

Workflow Data Patterns: Identification, Representation and Tool Support 365

3.4 Data-Based Routing

Whereas other groups of patterns focus on characteristics of data elements in
isolation from other workflow perspectives (i.e. control, resource, organisational
etc.), data-based routing patterns aim to capture the various ways in which data
elements can interact with other perspectives and influence the overall operation
of the workflow. Constructs such as pre-conditions, post-conditions, triggers and
splits are characterised by these patterns and seven of them have been identified
as listed in lines 34 to 40 of Table 1. We do not discuss these patterns in detail
here and interested readers are referred to [10] for more details.

4 Evaluation of Existing Workflow Products

This section presents the results of a detailed evaluation of support for the 40
workflow data patterns by six workflow systems, standards and web service com-
position languages. A broad range of offerings were chosen for this review in order
to validate the applicability of each of the patterns to the various types of tools
that fall under the “workflow umbrella” [6]. Specific tools and languages evalu-
ated were Staffware Process Suite v9, WebSphere MQ Workflow 3.4, FLOWer
3.0, COSA 4.2, XPDL 1.0 and BPEL4WS 1.1. A three point assessment scale
is used with “+” indicating direct support for the pattern, “+/–” indicating
partial support and “–” indicating that the pattern is not implemented. Specific
rating criteria have been devised and are detailed in [10].

Lines 1 to 8 indicate the various levels of data construct visibility supported
within the tools. As a general rule, it can be seen that individual products tend
to favour either a task-level approach to managing production data and pass
data elements between task instances or they use a shared data store at case
level. The only exception to this being COSA which fully supports data at both
levels. A similar result can be observed for workflow and environment data with
most workflow products fully supporting one or the other (Staffware being the
exception here). The implication of this generally being that globally accessi-
ble data can either be stored in the workflow product or outside of it (i.e. in
a database). XPDL and BPEL4WS are the exceptions although this outcome
seems to relate more to the fact that there is minimal consideration for global
data facilities within these specifications. Lines 9 to 14 list the results for in-
ternal data passing. All offerings supported task-to-task interaction and block
task-to-sub-workflow interaction4. The notable omissions here were the general
lack of support for handling data passing to multiple instance tasks (FLOWer
being the exception) and the lack of integrated support for data passing between
cases. Lines 15 to 26 indicate the ability of the workflow products to integrate
with data sources and applications in the operating environment. WebSphere
MQ, FLOWer and COSA demonstrate a broad range of capabilities in this area.
XPDL and BPEL4WS clearly have limited potential for achieving external inte-
gration other than with web services. Lines 27 to 33 illustrate the mechanisms
4 BPEL4WS being the exception given its lack of support for sub-workflows.

366 N. Russell et al.

Table 1. Support for Data Patterns in Workflow Systems

Nr Pattern S
ta

ff
w
a
re

W
e
b
S
p
h
e
re

F
L
O
W

e
r

C
O
S
A

X
P
D
L

B
P
E
L
4
W

S

1 Task Data – +/– +/– + – +/–

2 Block Data + + + + + –

3 Scope Data – – +/– – – +

4 Folder Data – – – + – –

5 Multiple Instance Data +/– + + + + –

6 Case Data +/– + + + + +

7 Workflow Data + + – +/– +/– –

8 Environment Data + +/– + + – +

9 Data Interaction between Tasks + + + + + +

10 Data Interaction – Block Task to Sub-workflow + + +/– +/– + –

11 Data Interaction – Sub-workflow to Block Task + + +/– +/– + –

12 Data Interaction – to Multiple Instance Task – – + – – –

13 Data Interaction – from Multiple Instance Task – – + – – –

14 Data Interaction – Case to Case +/– +/– +/– + +/– +/–

15 Data Interaction – Task to Env. – Push + +/– + + + +

16 Data Interaction – Env. to Task – Pull + +/– + + + +

17 Data Interaction – Env. to Task – Push +/– +/– +/– + – +/–

18 Data Interaction – Task to Env. – Pull +/– +/– +/– + – +/–

19 Data Interaction – Case to Env. – Push – – + – – –

20 Data Interaction – Env. to Case – Pull – – + – – –

21 Data Interaction – Env. to Case – Push +/– +/– + + – –

22 Data Interaction – Case to Env. – Pull – – + + – –

23 Data Interaction – Workflow to Env. – Push – +/– – – – –

24 Data Interaction – Env. to Workflow – Pull +/– – – – – –

25 Data Interaction – Env. to Workflow – Push – +/– – – – –

26 Data Interaction – Workflow to Env. – Pull + + – + – –

27 Data Transfer by Value – Incoming – + – +/– +/– +

28 Data Transfer by Value – Outgoing – + – +/– +/– +

29 Data Transfer – Copy In/Copy Out – – +/– – +/– –

30 Data Transfer by Reference – Unlocked + – + + + +

31 Data Transfer by Reference – Locked – – +/– – – +/–

32 Data Transformation – Input +/– – +/– – – –

33 Data Transformation – Output +/– – +/– – – –

34 Task Precondition – Data Existence + – + + – +/–

35 Task Precondition – Data Value + – + + + +

36 Task Postcondition – Data Existence +/– + + – – –

37 Task Postcondition – Data Value +/– + + – – –

38 Event-based Task Trigger + +/– + + – +

39 Data-based Task Trigger – – + + – +/–

40 Data-based Routing +/– + +/– + + +

Workflow Data Patterns: Identification, Representation and Tool Support 367

used by individual workflow engines for passing data between components. Gen-
erally this occurs by value or by reference. There are two areas where there is
clear opportunity for improvement. First, support for concurrency management
where data is being passed between components – only FLOWer and BPEL4WS
offered some form of solution to this problem. Second, the transformation of
data elements being passed between components – only Staffware provides a
fully functional capability for dealing with potential data mismatches between
sending and receiving components although its applicability is limited. Lines 34
to 40 indicate the ability of the data perspective to influence the control per-
spective within each product. FLOWer demonstrates outstanding capability in
this area and Staffware, WebSphere MQ and COSA also have relatively good
integration of the data perspective with control flow although each of them lack
some degree of task pre and postcondition support. Similar comments apply to
XPDL which has significantly more modest capabilities in this area and com-
pletely lacks any form of trigger support. BPEL4WS would also benefit from
better pre and postcondition support and lacks data-based triggering.

Through these evaluations a number of insights have been gained in relation
to the current level of data support in workflow systems. Current workflow mod-
elling techniques centre on the capture of control-flow and offer minimal support
for documenting data requirements. This difficulty extends into workflow design
tools which typically provide fragmented facilities for incorporating data require-
ments in workflows. There is little support for multiple instance tasks in current
tools (which provide for true task parallelism) and where it exists, the level of
data support is minimal. There also appears to have been little learnt from the
database field and the evaluations revealed limited support for data persistence
and concurrency handling in the tools examined.

5 Conclusion

This paper has identified 40 new workflow data patterns which describe the
manner in which data is defined and utilised in workflow systems. The main
contribution of this work is that it is the first systematic attempt to provide a
taxonomy of data usage in workflow systems in a technology-independent man-
ner. Validation of the applicability of these patterns has been achieved through a
detailed review of six workflow systems, standards and web service composition
languages. The results of this review indicate that the data patterns identified
are applicable not only to workflow systems but that they are also of relevance
to process-aware information systems more generally.

Evaluation of pattern support in current tools gives a valuable insight into
the operation of workflow systems and the data patterns identified have a num-
ber of practical uses. First, they provide an effective foundation for training
workflow designers and developers. Second, they provide a means of assessing
tool capabilities and are particularly useful in tool evaluation and selection exer-
cises (e.g. tender evaluations). Finally, they offer the basis for vendors to identify
functionality gaps and potential areas for enhancement.

368 N. Russell et al.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.

3. D. Barbara, S. Mehrotra, and M. Rusinkiewicz. INCAs: Managing Dynamic Work-
flows in Distributed Environments. Journal of Database Management, 7(1):5–15,
1996.

4. M. Dumas and A. ter Hofstede. UML Activity Diagrams as a Workflow Specifica-
tion Language. In M. Gogolla and C. Kobryn, editors, Proceedings of the Fourth
International Conference on the Unified Modeling Language (UML 2001), LNCS
2185, pages 76–90, Toronto, Canada, 2001. Springer.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, USA, 1995.

6. D. Georgakopoulos, M.F. Hornick, and A.P. Sheth. An Overview of Workflow Man-
agement: From Process Modeling to Workflow Automation Infrastructure. Dis-
tributed and Parallel Databases, 3(2):119–153, 1995.

7. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture and Implementation. Thomson Computer Press, London, UK, 1996.

8. C.B. Medeiros, G. Vossen, and M. Weske. WASA: A Workflow-Based Architecture
to Support Scientific Database Applications. In N. Revell and A.M. Tjoa, editors,
Proceedings of the 6th International Workshop and Conference on Database and
Expert Systems Applications (DEXA), pages 574–583, London, UK, 1995. Springer.

9. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of
Workflows Without Losing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

10. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Data Patterns (Revised Version). Technical Report FIT-TR-2004-01, Queensland
University of Technology, Brisbane, Australia, 2004. http://www.bpmcenter.org.

11. A.-W. Scheer. ARIS - Business Process Modelling. Springer, Berlin, Germany,
2000.

12. G. Vossen and M. Weske. The WASA2 Object-Oriented Workflow Management
System. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD
1999), pages 587–589, Philadelphia, Pennsylvania, USA, 1999. ACM Press.

13. D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz-Dittrich. The Mentor Project:
Steps Towards Enterprise-Wide Workflow Management. In S.Y.W. Su, editor, Pro-
ceedings of the 12th International Conference on Data Engineering (ICDE 1996),
pages 556–565, New Orleans, Louisiana, USA, 1996. IEEE Computer Society.

http://www.bpmcenter.org

	Introduction
	Background and Related Work

	Workflow and Data Concepts
	Workflow Structure
	Data Characterisation

	Data Patterns
	Data Visibility
	Data Interaction
	Data Transfer Patterns
	Data-Based Routing

	Evaluation of Existing Workflow Products
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

