A Transaction Model for Multidatabase Systems*

Sharad Mehrotra
Rajeev Rastogi
Abraham Silberschatz

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188 USA

Abstract

A multidatabase system (MDBS), consists of a
number of sites, each of which runs a distinct com-
mercial database management system (DBMS). The
goal of an MDBS is to integrate the various DBMSs
to allow applications to access data residing in several
DBMSs, without requiring modifications to the indi-
vidual DBMSs. This implies that each site is allowed
a high degree of local autonomy. This autonomy re-
quirement makes the task of ensuring both the atom-
icity and isolation properties of transactions, in the
presence of failures, difficult. In this paper, we de-
velop a semantically rich transaction model for MDBS
applications. We relaz the atomicity requirement on
transactions and propose a new suitable correciness
criterion. We also develop new commit and concur-
rency control protocols that ensure correctness and do
not violate the local autonomy of the various sites.

1 Introduction

The problem of transaction management in a mul-
tidatabase system (MDBS) has received considerable
attention from the database community in recent years
[BST90, ED90, GRS91, MRB*92b, MRB*92a]. The
basic problem is to integrate a number of pre-existing
local database management systems (DBMSs) located
at different sites, into an MDBS environment that al-
lows transactions to access data residing at multiple
sites. Each local DBMS has a local transaction man-
ager (LTM) which is responsible for ensuring local
database consistency. The global transaction manager

* Work partially supported by NSF grants IRI-8805215, IRI-
9003341, grants from the IBM corporation, the HP corporation,
and the NEC corporation.

0-8186-2865-0 /92 $3.00 © 1992 IEEE

56

Henry F. Korth

Matsushita Information Technology Laboratory
182 Nassau Street
Princeton, NJ 08542-7072

(GTM), built on top of the existing databases, is re-
sponsible for ensuring global database consistency.
Transactions in an MDBS are of two types:

e Local transactions, those transactions that ex-
ecute at a single site, and outside the control of

the GTM.

e Global transactions, those transactions that
may execute at several sites, and under the con-
trol of the GTM.

A distinguishing feature of MDBSs is the require-
ment that the local autonomy of the local DBMSs be
preserved. In this paper, local autonomy is defined to
consist mainly of:

¢ Design Autonomy. The local sites are free to
follow any concurrency control protocol in order
to ensure local database consistency.

¢ Execution Autonomy. Each LTM has com-
plete control over those transactions that are ex-
ecuting at its site. Thus, the LTM is free to abort
a transaction as long as the transaction in ques-
tion has not committed yet.

The preservation of the execution autonomy is
essential in an MDBS environment since the local
DBMSs may not, in general, permit transactions to
hold onto resources, or execute, for an unbounded pe-
riod of time. This requirement, however, has a serious
impact on the way the atomicity of global transactions
in an MDBS environment can be achieved [BST90].
For example, the two-phase commit (2PC) protocol,
which is the standard protocol used to ensure the
atomicity of global transactions [BHG87] cannot be
used. The main problem with using the 2PC protocol,
or any other atomic commit protocol (e.g., three phase
commit protocol [Ske82]), in an MDBS environment

is that such protocols require that in the presence of
failures, a global subtransaction in the prepared state
be allowed to hold onto resources for an unbounded
period of time. This clearly violates the execution
autonomy requirement. Furthermore, since the pre-
existing local DBMSs may not provide for a prepared
state, substantial changes may need to be made to the
existing DBMS software to support an atomic commit
protocol, thus resulting in the violation of design au-
tonomy!

In the absence of an atomic commit protocol it is
possible that certain subtransactions of a global trans-
action abort, whereas others commit, thereby violat-
ing the atomicity property. We refer to such a global
transaction as a partially committed transaction. Par-
tially committed transactions may result in the loss of
consistency of the MDBS. The proposed approaches
to deal with this problem can be characterized as be-
ing either forward or backward in nature. The for-
ward approach was first suggested in [BST90], where
the aborted subtransactions of a partially commit-
ted transaction are redone from logs maintained by
the GTM. Since the GTM has no control over the
execution of local transactions, certain local transac-
tions may execute before the redo transaction of an
aborted global subtransaction executes, resulting in a
non-sgerializable execution [BST90, MRB*92b)]. Thus,
in order to ensure both atomicity and serializability,
restrictions are placed on the data items read and up-
dated by global and local transactions.

The backward approach was adopted in [LKS91a]
in the context of a general distributed system to al-
leviate the problem of blocking. It utilizes compen-
sating transactions to undo the effects of committed
subtransactions of a partially committed transaction.
Since compensation only guarantees a weaker form of
atomicity, the authors recognize the need for, and pro-
pose a correctness criterion for executions in which
compensation is used for recovery purposes.

In this paper, we develop a fault-tolerant transac-
tion management scheme for an MDBS environment
that combines both the forward and backward ap-
proaches. In contrast to the scheme developed in
[BST90], where redo logs were used to restore database
consistency, our forward approach is based upon retry-
ing of the appropriate aborted subtransactions. Our
combined recovery approach allows us to relax some
of the restrictions imposed on data items that transac-
tions can read and update [BST90]. We also present
new commit and concurrency control protocols used
by the GTM that ensure the correctness of executions
and do not violate the local autonomy of sites. The

57

correctness criterion we use in the paper is similar to
the one in [LKS91a].

The remainder of the paper is organized as follows.
In Section 2, we introduce the MDBS model and the
global transaction model based on retriable and com-
pensatable types of transactions. Section 3 discusses
the GTM commit protocol. In Section 4, a correct-
ness criterion for executions containing compensating
transactions is proposed. In Section 5, we present the
GTM concurrency control protocol and show that the
protocol ensures resulting schedules are correct. Sec-
tion 6 contains concluding remarks.

2 The MDBS Model

An MDBS consists of a set of autonomous pre-
existing centralized local database systems located at
sites $1,82,...,8m. Transactions, in our model, are
a sequence of read and write operations followed by
either a commit operation or an abort operation. A
local schedule consists of a sequence of operations re-
sulting from the concurrent execution of transactions
at a site. A global schedule is a distributed schedule
[Pap86] consisting of operations belonging to transac-
tions (global and local) with a partial order on them.
The LTM at each local site s; ensures the atomicity of
transactions and the serializability of the local sched-
ules at site s;.

The execution of global transactions is co-ordinated
by the GTM, which communicates with the LTMs by
means of server processes that execute at each site on
top of the local DBMSs. We assume that the interface
between a server and an LTM provides for operations
to be submitted by the server to the LTM, and the
LTM to acknowledge the completion of operations to
the server. The GTM does not schedule an operation
belonging to a global transaction for execution unless
it receives an acknowledgement from the server that
the previous operation of the global transaction has
been executed at the local site. We also assume that
the GTM is centrally located, and the sites at which
a global transaction executes are known to the GTM
a priori. In addition, the LTM does not distinguish
between local transactions and global subtransactions
executing at its site.

In order to exploit the semantic recovery options
of compensation and retrial we develop an extended
transaction model. Each global transaction, in our
model, consists of a number of subtransactions, each
of which is one of the following:

o Compensatable: a subtransaction whose exe-

cution at a site can be undone, after it commits,
by executing a compensating transaction. For ex-
ample, a subtransaction that reserves a seat in an
airline reservation system can be compensated for
by a subtransaction that cancels the reservation.

o Retriable: a subtransaction that can be re-
tried and eventually succeeds if retried a sufficient
number of times. Cancellation of a seat in an air-
line reservation system, or crediting a bank ac-
count, are examples of retriable subtransactions.

o Pivot: a subtransaction that is neither retriable
nor compensatable.

A global transaction has at most one pivot subtrans-
action. We further assume that no data dependencies
exist between the subtransactions of a global transac-
tion; that is, the execution of a global transaction at
one site is independent of its execution at other sites.

Associated with each compensatable subtrans-
action is a compensating transaction. Compen-
sating transactions are transactions that restore
database consistency by semantically undoing com-
mitted transactions, without resorting to cascading
aborts [LKS91a]. Let T; be a global transaction and
T;; be a compensatable subtransaction of T; that com-
mitted at site s;. To undo the effects of Tj;, a com-
pensating transaction for Tjj, denoted by CT;;, is ex-
ecuted. CT;; is a separate transaction from T;; and is
always serialized after Tj; in any schedule. Executing
CT;j, however, does not guarantee that all the effects
of T;; are undone and thus ensures only a weaker form
of atomicity [LKS91a]. In our model, we further as-
sume the following about compensating transactions:

o Since no data dependencies exist between sub-
transactions of a global transaction, C'T;; exe-
cutes only at the site at which Tj; commits.

o CT;; may itself be aborted by the local DBMSs,
but if retried a sufficient number of times, it even-
tually succeeds.

e CT;; is independent of the transactions that ex-
ecute between Tj; and CT;; in the schedule. It
depends only on T;;, and the integrity constraints
of the database.

We now illustrate the expressive power of the
above-developed transaction model by applying it to
a banking enterprise. In such an environment, trans-
fer of money between accounts, audits that return the
current balance in accounts, deposits and withdrawals
from accounts, constitute transactions that can be

58

modeled using our scheme. For example, transactions
that transfer money between accounts belonging to
different sites can be modeled as global transactions
with two subtransactions, one which credits a bank
account, and another which debits a bank account.
The credit subtransaction is retriable, while the debit
subtransaction is compensatable (the compensating
transaction for a debit transaction is a credit trans-
action, which can be assumed to succeed if retried
a sufficient number of times'). Similarly, an audit
transaction can be modeled as a global transaction,
all of whose subtransactions are compensatable (the
compensating transaction for a read-only transaction
does nothing, since a read-only transaction has no ef-
fects on the execution of other transactions or the fi-
nal database state). Transactions that transfer money
between accounts belonging to the same site are lo-
cal transactions as are those that deposit or withdraw
money from an account.

3 The GTM Commit Protocol

The GTM commit protocol must ensure that either
all subtransactions of a global transaction are cornmit-
ted (that is, they are either committed or retried), or
all subtransactions are undone (that is, they are ei-
ther aborted by the LTM or are compensated for).
A commit protocol that ensures the above property
of transactions is said to preserve semantic atomicity
[LKS91a]. Since retriable subtransactions of a global
transaction in our model may not be compensatable,
and compensatable subtransactions may not be retri-
able, the GTM commit protocol must control the or-
der in which the subtransactions are committed. The
protocol consists of three phases, each of which deals
with the commit of one of the subtransaction types.
The commit protocol is invoked only after all the sub-
transactions of a global transaction have completed
execution.

To describe the protocol, we need to introduce some
terminology. The servers at sites at which a global
transaction 7; executes are referred to as T}’s cokorts.
The server process executing at the site at which 7}’s
pivot subtransaction executes is referred to as the p-
cohort. Similarly, servers at sites on which compensat-
able and retriable subtransactions execute are referred
to as c-cohorts and r-cohorts respectively.

We are now in a position to define the three phases
in the GTM commit protocol, which are:

In case the account is deleted, we assume that an exception
is raised, and the money is mailed directly to the account-holder.

Phase 1:

e The GTM sends each c-cohort a (commit, T;)
message.

e When a c-cohort receives the {(commit, T;) mes-
sage from the GTM, it submits the commit op-
eration for T} to the local DBMS. On receiving
an acknowledgement from the local DBMS that
the subtransaction has committed, the c-cohort
sends a (ackcommit,T;) message to the GTM.
If, however, the subtransaction is aborted by the
local DBMS, it sends an {ack.abort, T;) message
to the GTM.

Phase 2:

e When the GTM receives {(ack_commit,T;) mes-
sages from all the c-cohorts, it sends a
(commit, T;) message to the p-cohort. If, how-
ever, it receives at least one {(ack.abort, T;) mes-
sage from any of the c-cohorts, it aborts the global
transaction T}, and sends all cohorts a (abort, T;)
message.

o When the p-cohort receives a {commit, T;) mes-
sage from the GTM, it submits the commit op-
eration for T} to the local DBMS. On receiv-
ing an acknowledgement from the local DBMS
that the subtransaction has committed at the lo-
cal DBMS, it sends a (ackcommit, T;) message
to the GTM. If, however, the pivot subtransac-
tion is aborted by the local DBMS, it sends a
{(ack.abort, T;) message to the GTM.

Phase 3:

o When the GTM receives a {ack_commit, T;) mes-
sage from the p-cohort, it commits the global
transaction and sends (commit, T;) messages to
each of the r-cohorts. If, however, it receives
a (ack.abort, T;) message from the p-cohort, it
aborts the global transaction, and sends all co-
horts (abort, T;} messages.

o When a r-cohort receives a (commit, T;) message
from the GTM, it submits the commit operation
for T; to the local DBMS. In case the local DBMS
aborts the subtransaction, it retries the subtrans-
action until it is committed at the local DBMS.
When the subtransaction finally commits at the
local DBMS, it sends a {(ackcommit, T;} message
to the GTM.

59

The above protocol specifies the actions taken by
a cohort when it receives the (commit,T;) message
from the GTM. It also specifies the actions the GTM
takes when it receives either a (ackcommit,T;) or a
(ack.abort, T;) message from each of the cohorts. We
now specify the actions taken by the cohorts when
they receive a (abort, T;) message from the GTM.

o If the subtransaction has been aborted by the lo-
cal DBMS, then the cohort sends a {(ack abort, T})
message to the GTM (if it has not already done
s0).

e If the subtransaction has neither been aborted
nor committed by the local DBMS, the cohort
submits the abort operation for T} to the local
DBMS. On receiving an acknowledgement from
the local DBMS that the subtransaction has been
aborted, it sends a (ack_abort, T;) message to the
GTM.

o Ifa subtransaction T}; has been committed by the
local DBMS at site s; (note that only c-cohorts
can receive a (abort, T;) message from the GTM
after T; has committed at the local DBMS), the
cohort schedules CT;j, the compensating trans-
action for Tjj, for execution. On commitment
of CT;; at the local DBMS, the cohort sends a
{ack_abort, T;) message to the GTM.

In the above protocol, if any of the compensatable
subtransactions or the pivot subtransaction aborts,
the GTM aborts the global transaction. If the pivot
subtransaction commits, then the GTM commits the
global transaction. It should be noted that it is possi-
ble for the GTM to receive a {ackcommit, T;) message
followed by a (ack-abort, T;) message from a c-cohort.
However, from a p-cohort or a r-cohort, the GTM only
receives either a (ack.commit, T;) or a (ackabort, T;)
message.

In the sequel, we say that transaction T; has
strongly terminated if the GTM receives either a
{ackcommit, T;) message from every cohort, or a
(ack_abort, T;) messages from every cohort. We also
say that T; has weakly terminated if the GTM receives
either a (ack_commit, T;) or a (ack.bort; T;) message
from every cohort. Thus, a strongly terminated trans-
action is also a weakly terminated transaction.

At various stages of the execution of the GTM com-
mit protocol, the servers are required to wait for mes-
sages before progressing. This, in the presence of com-
munication and site failures could potentially result in
blocking. However, the problem is easily alleviated by
using a timeout scheme. If a server is interrupted by

a timeout while waiting for a message from the GTM,
it assumes that the GTM has failed and submits an
abort operation to the local DBMS, thereby releas-
ing the resources held by the transaction. Note that
a retriable subtransaction that has been aborted by
the server on timeout may need to be retried in case
the GTM commits the transaction. Thus, the GTM
commit protocol does not cause blocking of local ap-
plications. Also, if there are no failures, the protocol
requires 2n messages and 6 rounds as compared to 3n
messages and 3 rounds needed by the standard 2PC
protocol [BHG87], where n is the number of sites at
which the transaction executes.

Theorem 1: The GTM commit protocol preserves
semantic atomicity of transactions. O

4 Correctness of Non-atomic Sched-
ules

Consider a global schedule S in which each of the
global transactions has strongly terminated. Schedule
S may contain transactions that are either atomic or
non-atomic. A transaction T; in a schedule S is atomic
if either one of the following two conditions hold:

o T; is committed in S (in a distributed system, all
subtransactions of T; are committed in S).

o if T; is aborted in S (in a distributed system, if
any of T;’s subtransactions are aborted in S), then
it does not have any effects on the execution of
other transactions in S, or on the final database
state.

A non-atomic transaction is one that does not satisfy
both of the above conditions.

Consider a partially committed global transaction
Ty that commits at site s; but aborts at s;. Depending
upon the types of subtransactions 73, and 733, either
Ti2 is retried, or T3, is compensated for. Let S be the
global schedule in which T} has strongly terminated. If
Ti2 is retried, then Tj is atomic (since all its subtrans-
actions are committed). However, if T}; is compen-
sated for, then T} is non-atomic (since it is committed
at some sites but aborted at others). We refer to a
schedule that contains non-atomic transactions as a
non-atomic schedule. In [LKS91b], it was shown that
even if a non-atomic schedule S were serializable, and
the commit protocol were to ensure semantic atom-
icity, it is possible that certain transactions “see” an
inconsistent state of the database. To illustrate this,

consider the following example, from our banking en-
terprise domain.

Example 1: Let T be a transaction that trans-
fers money from an account A at site sy to an account
B at site sy, and consists of a debit subtransaction
Ti: and a credit subtransaction Ti». Consider a sce-
nario in which T3; commits but Ti; aborts. Let T}
be an audit transaction that now executes (before T7;
is compensated for by crediting account A); Ty reads
the balances in both accounts A and B, and sees a
database state in which the sum of the balances of
accounts A and B is less than the actual sum. This
situation is clearly unacceptable. O

To prevent transactions from “seeing” an incon-
sistent database state, we must place restrictions on
the concurrency permitted in the system. To de-
velop these restrictions, we need to define the fol-
lowing notation. The set of sites at which a global
transaction T; executes is denoted by ezec(T;). The
sites at which T, commits and aborts are denoted
by commit(T;) and abori(T;), respectively (note that
ezec(T;) = commit(T;) U abort(T;)). Furthermore,
Seommit(Ty) denotes the projection of schedule S on
the data items at sites at which T} commits.

Let sy, s2,..., s, be the sites at which a non-atomic
transaction T; commits; thus s; € commit(T;), where
1 £ j £ r. Let CT;; be the compensating trans-
action that executes to undo semantically the effects
of T;;. Transactions CT};,CTis,...,CT;, are consid-
ered as subtransactions of a global transaction CTj,
and CT; is referred to as the compensating transac-
tion corresponding to 7.

Definition 1: Let S be a non-atomic schedule in
which every global transaction is strongly terminated.
Schedule S is serializable with respect to compensation
(SRC) if all of the following conditions hold:

o For each non-atomic transaction T} in S, there ex-
ists a compensating transaction C'T; that is com-
mitted in S.

o S is serializable.

e Let T; be an arbitrary global transaction in S.
For all non-atomic transactions 7; serialized be-
fore T} in Seomm™H(T5) if CT; is serialized after T;
in §eemmi(Ty), then abort(T;) N commit(T}) = 0.
a

Note that in Example 1, in which the audit
transaction 73 sees an inconsistent database state,

60

commit(Ty) = {s1,82}. Further, since T; (the funds
transfer transaction) aborts at s;, we have s; €
abort(T1). Thus, as T at site s, is serialized between
T; and CTi, and abort(Ty) N commit(Tz) # 0, the re-
sulting serializable schedule is not SRC. In an SRC
schedule, the audit transaction would execute only af-
ter the debit subtransaction is compensated for, and
thus would see a consistent database state.

It can be shown that that if the schedule S is SRC,
then each transaction sees a consistent database state.
The proof of this claim is substantial and is beyond the
scope of this paper. We refer the interested reader to
[MRKS92].

5 The GTM Concurrency Control
Protocol

In this section, we present a GTM concurrency con-
trol protocol that irrespective of the concurrency con-
trol protocol followed by the local DBMSs, ensures
that schedules in which every global transaction has
strongly terminated are SRC. Our protocol involves
insertion and deletion of edges from a transaction-site
graph, to be defined below. We first develop an edge
management scheme that ensures schedules consisting
of global, local and compensating transactions are se-
rializable. We then augment the edge management
scheme developed in order to ensure that schedules

are SRC.
5.1 The Transaction-Site Graph

Since local transactions execute outside the control
of the GTM, the GTM is not aware of the possible
indirect conflicts between global transactions at the
local DBMSs due to local transactions. This may re-
sult in non-serializable executions. In order to prevent
such non-serializable schedules, the GTM maintains a
graph, called the transaction-site graph (TSG), which
is similar to the commit graph presented in [BST90].
A TSG is an undirected bipartite graph consisting of
nodes corresponding to local sites (site nodes) and
global transactions (transaction nodes). Edges in the
TSG may be present only between transaction nodes
and site nodes. An edge between a transaction node
Ty and a site node s; indicates that s; € ezec(T;), and
is denoted by either (s;, T;) or (T3, s7). Edges (Ti, sx)
in the TSG, for all sites si € ezec(T;), are referred to
as either T;’s edges, or edges incident on T;.

Edges in the TSG are inserted as a result of the
execution of certain serialization events [ED90] (also

61

referred to as serialization functions in [MRB*92a]).
For a given concurrency control protocol, the serializa-
tion event, ser, is a function that maps every transac-
tion to one of its operations such that, for any pair of
transactions T; and Tj in a schedule that results from
the protocol, if T; is serialized before Tj, then ser(T;)
executes before ser(T;) in the schedule?. For exam-
ple, for the timestamp ordering scheme, ser(T;) is the
operation that results in transaction T; being assigned
a timestamp. Similarly, in case of the 2PL protocol,
ser(T;) is the operation that results in T; obtaining its
last lock.

Serialization events may not exist for certain pro-
tocols (e.g., serialization graph testing). For such pro-
tocols, serialization events can be introduced by forc-
ing conflicts between transactions {GRS91]. For ex-
ample, we can require that every transaction update
a particular data item, say, ticket. If some trans-
action 7 is serialized before another transaction Tj,
then 7; must have updated ticket before T; updated
it. Thus, ser(T;) is the write operation of transaction
T; on ticket.

We require that all the edges associated with a
global transaction 7T; be inserted into the TSG be-
fore ser(Ti) is submitted to the server at s, for
any s € exzec(T;). Note that as the compensat-
ing transaction CT; corresponding to a non-atomic
transaction T} is also considered as a global trans-
action, edges corresponding to C'T; must also be in-
serted into the TSG. Let CT; consist of subtransac-
tions CT}1,CTia, . . ., CT;y, where 54, 89, . . ., 8, are the
sites in commit(T;). Since the GTM does not control
the execution of CT;; (which are directly executed by
the server on receipt of an {abort,T;) message from
the GTM), the GTM inserts edges corresponding to
CT; before dispatching any (abort, T;) message to the
servers at the sites in commit(T;).

5.2 The Edge Management Scheme

We now present the rules used by the GTM for
deciding when edges can be safely inserted and deleted
in the TSG. In contrast to the scheme used in [BST90],
our scheme permits the TSG to contain cycles.

In order to describe the scheme we need to de-
fine the following terminology. If the GTM receives a
{ack_commit, T;) message from the cohort at site s;,
then edge (T3, s;) is referred to as a committed edge.
Similarly, if the GTM receives a (ack.abort, T;) mes-
sage from the cohort at site s;, edge (T, 8;) is referred

2For a given protocol, various functions may satisfy the prop-
erty required of a serialization event. We assume that one of
them is chosen to be ser.

to as an aborted edge. If the GTM has not received any
message from the cohort at site s;, then edge (T3, s;)
is referred to as an unmarked edge. Thus, edge (T3, 5;)
is a committed edge only if T;; has committed at site
s;. If edge (T;, 57) is an aborted edge but not a com-
mitted edge, then Ti; must have aborted at site s;.
Further, if edge (T;, s;) is both a committed and an
aborted edge, then the compensating transaction for
T;; has committed at site s;.

Edges of a transaction T; are inserted into the TSG
only if the insertion of T;’s edges does not. violate the
edge insertion rule described below. The GTM inserts
edges belonging to only one transaction at a time.

Edge Insertion Rule: For every cycle that results
due to the insertion of T}’s edges into the TSG at least
one of the following condition holds:

1. The cycle contains an edge that is aborted but
not committed.

2. There exist transactions Tj, T (different from T;)
and distinct sites s4, s, such that.(T}, 8,), (54, T3),
(T3, sr) and (s,,Ti) are edges in the cycle, and
both (Tj, s4), (sr, Tk) are committed edges. O

The edge insertion rule ensures that cycles in the
TSG do not cause cycles in the serialization graph
[BHGS87). To see this, consider a cycle in the TSG
that satisfies condition 1. Since an aborted subtrans-
action does not conflict with any other transaction,
such a cycle does not cause a cycle in the serialization
graph. For a cycle in the TSG that satisfies condition
2, we see that, since ser(T;;) executes after ser(Tj,)
at site sy, and ser(T;,) executes after ser(T,) at site
sy, T; is serialized after Tj and T} at s, and s, respec-
tively. Thus, such a cycle does not cause a cycle in
the serialization graph.

Edge Deletion Rule: Let 7 be a set of transac-
tions such that for any pair of transactions T;, Tj, if
T; € T and T; is connected to T; by a path consisting
of either committed or unmarked edges, then T; € 7.
If every transaction in 7 has weakly terminated, then
edges incident on all transactions in 7 are deleted from
the TSG. D

It must be noted that if edges incident on any trans-
action in 7 are deleted before all transactions in 7
have weakly terminated, then non-serializable sched-
ules may result.

Theorem 2: Consider an MDBS where every LTM
ensures the serializability of local schedules. If the

62

GTM follows the edge management scheme, then ev-
ery global schedule is serializable. O

5.3 The Augmented Edge Management
Scheme

The edge management scheme described above en-
sures that the resulting global schedules are serializ-
able. However, it does not guarantee that such sched-
ules are SRC. For example, the schedule in Example
1 is serializable but not SRC; it could be generated
by the above scheme as follows. The funds transfer
transaction T} executes first and edges corresponding
to it are inserted. After the GTM receives a mes-
sage that Ty at site s, is aborted, edge (71, s2) is an
aborted edge. Thus, the above edge insertion rule will
allow the audit transaction T3 to execute since the cy-
cle caused by it in the TSG contains an aborted edge,
resulting in a non-SRC schedule.

In order to ensure that schedules are SRC, the edge
insertion and deletion rules must be augmented as de-
scribed below. An algorithm to implement the scheme
efficiently can be found in [MRKS92].

Augmented Edge Insertion Rule: For every
cycle that results due to the insertion of T}’s edges,
the following two requirements must hold:

¢ The edge insertion rule of the edge management
scheme, is satisfied.

o If there exists a transaction T (different from T)
and distinct sites s; and s, such that (T},s,),
(s¢:T3), (Tiysr), (sr,T;) are edges in the TSG,
then either (T}, s,) and (s,, T;) are both commit-
ted edges, or (T}, s,) and (sr, T}) are both aborted
edges. O

Augmented Edge Deletion Rule: Let 7 be a
set of transactions such that for any pair of transac-
tions T;, T;, if T; € T and Tj is connected to T} by
a path consisting of either committed or unmarked
edges, then T; € r. If every tramsaction in 7 has
strongly terminated, then edges incident on all trans-
actions in 7 are deleted from the TSG. O

Since a strongly terminated transaction is also
weakly terminated, if the augmented edge deletion
rule holds, then the edge deletion rule also holds.

Theorem 3: Consider an MDBS where every LTM
ensures the serializability of local schedules. If the

GTM commit protocol and the augmented edge man-
agement scheme are used, then every resulting global
schedule S is SRC. O

8 Conclusion

We have proposed a transaction model for MDBS
applications in which global subtransactions may be
either compensatable or retriable. In our enriched
transaction model, we use compensation and retrying
for recovery purposes. However, since such executions
may no longer consist of atomic transactions, it was
necessary for us to develop a new correctness criterion
that ensures that transactions see consistent database
states, and database consistency is preserved.

We have developed a new commit protocol and
a new concurrency control scheme that ensures that
all generated schedules are correct. The new commit
protocol eliminates the problem of blocking, which is
characteristic of the standard 2PC protocol. The con-
currency control protocol we presented can be used
in any MDBS environment irrespective of the concur-
rency control protocol followed by the local DBMSs in
order to ensure serializability.

Acknowledgements

We would like to thank Eliezer Levy for discussions
that helped us develop a better understanding of com-
pensation and its role in transaction management.

References

P. A. Bernstein, V. Hadzilacos, and
N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-
Wesley, Reading, MA, 1987.

Y. Breitbart, A. Silberschatz, and G. R.
Thompson. Reliable transaction manage-
ment in a multidatabase system. In Pro-
ceedings of ACM-SIGMOD 1990 Inter-
national Conference on Management of
Data, Atlantic Cily, New Jersey, pages
215-224, 1990.

AK. Elmagarmid and W. Du. A
paradigm for concurrency control in het-
erogeneous distributed database systems.
In Proceedings of the Sizth International
Conference on Data Engineering, 1990.

[BHGS7]

[BST90]

[ED90]

63

[GRS91] D. Georgakopolous, M. Rusinkiewicz,
and A. Sheth. On serializability of multi-
database transactions through forced lo-
cal conflicts. In Proceedings of the Sev-
enth International Conference on Data

Engineering, Kobe, Japan, 1991.

E. Levy, H. F. Korth, and A. Silber-
schatz. An optimistic commit proto-
col for distributed transaction manage-
ment. In Proceedings of ACM-SIGMOD
1991 International Conference on Man-
agement of Data, Denver, Colorado,
pages 88-97, May 1991.

E. Levy, H. F. Korth, and A. Silber-
schatz. A theory of relaxed atomicity.
In Proceedings of the ACM SIGACT-
SIGOPS Symposium on Principles of
Distributed Computing, August 1991.

S. Mehrotra, R. Rastogi, Y. Breitbart,
H. F. Korth, and A. Silberschatz. The
concurrency control problem in mul-
tidatabases: Characteristics and solu-
tions. In Proceedings of ACM-SIGMOD
1992 International Conference on Man-
agement of Data, San Diego, California,
1992.

[MRB+92b] S. Mehrotra, R. Rastogi, Y. Breitbart,
H. F. Korth, and A. Silberschatz. En-
suring transaction atomicity in multi-
database systems. -~ In Proceedings of
the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of
Database Systems, San Diego, 1992.

S. Mehrotra, R. Rastogi, H. F. Korth,
and A. Silberschatz. A transaction model
for multidatabse systems. Technical Re-
port TR-92-14, Department of Computer
Science, University of Texas at Austin,
1992.

[LKS91a]

[LKS91b]

[MRB*92a]

[MRKS92]

[Pap86] C. Papadimitriou. The Theory of
Database Concurrency Control. Com-
puter Science Press, Rockville, Mary-

land, 1986.

D. Skeen. Non-blocking commit proto-
cols. In Proceedings of ACM-SIGMOD
1982 International Conference on Man-
agement of Data, Orlando, pages 133-
147, 1982.

[Ske82]

