
Workflow Management in an Internet Environment

Martin Waardenburg
Maarten van Emmerik

Web-based systems for workplace and facility automation are rapidly gaining in
popularity because they enable organizations to share data and business processes with
customers, partners and suppliers. Typically data is stored in a relational database and
users can access information via an application server which includes rules and business
processes. Since business processes may change frequently they should not be statically
programmed on the server but instead users should be able to dynamically design and
modify workflows behind these processes. Many workflow management systems are
available today but they often lack true integration with a Web-based environment or do
not support complex workflow patterns. Axxerion is designed to address these limitations
by integrating high-end workflow technology based on Petri Nets with a fully web-based
graphical environment for workflow design and visualization.

Workflow Management

Tools for customizing business processes
are typically referred to as workflow
management systems. A workflow
management system assigns work, passes
it on and tracks its progress. It can be a
standalone solution that interfaces with
other products or can be embedded in an
enterprise application.
Workflow management is still a relatively
new field in computing science. Despite the
efforts of the Workflow Management
Coalition (WfMC, [1]), workflow
management systems use a large variety of
languages and concepts based on different
paradigms. There is currently no generally
accepted standard for describing workflows
[2]. To be able to compare various
workflow management systems, a
comprehensive set of workflow patterns has
been defined in [2]. The result of this
research reveals that the expressive power
of contemporary systems leaves much to be
desired, and that these systems support
very different sets of patterns.

Furthermore, the workflow definitions used
by many systems are often not formally
defined which makes it hard to predict the
behavior of these workflows.
When selecting a workflow management
system, it makes sense to focus on
workflow management systems that are
based on a formal foundation and provide
support for the workflow patterns.
Additionally, it should be required that the
workflow system can be very tightly
integrated with the rest of the enterprise
system.

Requirements

Business processes include rules and
business logic, for example 'if' the value of
a purchase order is more than 1000 'then' it
needs additional approval. Some business
logic should be implemented by the vendor
of the platform and should never be
changed. For example, when a part is taken
from an inventory the stock should always
be decreased. Or if a document is locked for
editing nobody should be able to change it.

Axxerion Workflow Management 1

Figure 1. Graphical workflow definition for a request.

Other business processes may be very
much dependent on how a specific
organization works. For example, an
organization may define various processes
for dealing with customer requests
depending on the type of requests. Based
on feedback from customers these
processes may be changed over time. It is
therefore important that an enterprise
system allows users to quickly define and
modify processes without the need to
request a new software release from the
vendor. These are the kind of processes
that should be defined with a workflow
management system.
Because the business processes need to
closely cooperate with the business data,
the integration between processes and data
needs to be tight. A workflow should be
able to control the access rights of the data
that it is managing. For instance, when a
document goes from state 'draft' to state
'approved', the document access right
should go from 'full' to 'view'. To be able to
have such behavior combined with good
performance, the workflow system needs to
be very tightly integrated with the rest of
the system.
Since the business processes must be
understandable for the users who are
participating in the workflow, a good
graphical environment to present the
workflow is essential. Figure 1 shows an
example of a graphical representation for a
request workflow. A graphical
representation is much easier to
understand for users than a program or a
script. Therefore, it is desirable to have a
lot of expressive power in the graphical
representation of the workflow, which
leaves nothing or little to be defined in
additional scripting or programming.

Graphical visualization is not just helpful for
designing a workflow but also for providing
feedback to users when the workflow is
executed. A common complaint with many
workflow systems is that users do not know
what happens after they click on a button.
Or if a task has been assigned they cannot
easily see the current state of the workflow.
Figure 2 shows how a graphical
environment can help here. If a user
receives a task 'Evaluate' the workflow
diagram shows the current state in black
and previous and next states in grey. The
diagram shows that depending on whether
the user accepts or rejects the request it
can be processed or archived.
Because the workflow management system
should be integrated with a web-based
enterprise application, it is important that
the graphical definition and feedback from
the workflow can be done in a web-browser
Drawing and editing diagrams cannot be
done in a standard web page and therefore
a special browser plug-in or Java applet
should be provided. A Java applet is
probably preferable because it requires no
installation and works on multiple
platforms.
Workflow management systems should be
able to assign tasks to roles instead of
individual people. This avoids that the
workflow stalls when a specific person is
not available or has left the company. For
example, after an employee submits
maintenance request a task is created for
the role 'facility manager'. Depending on
how the workflow is defined one or more
persons who have been assigned to that
role will receive the task.
Regarding the expressive power of the
graphical representations, the workflow
management system should be able to

Axxerion Workflow Management 2

Figure 2. Graphical feedback during execution of a request workflow.

model the workflow patterns as mentioned
before. Further on in this paper we will
explain the actual patterns in more detail.
Finally, it is important that the workflow
definition has a formal foundation. This
ensures that the behavior of the workflow is
well-defined and not dependent on a
specific implementation. Furthermore, a
formal foundation provides a framework to
be able to prove certain properties of a
workflow and facilitates integration with
analysis tools

Petri Nets

Because of the requirements for a formal
foundation and graphical representation, it
makes sense to use Petri nets as a basis for
workflow definitions [3]. Petri nets were
devised in 1962 by Carl Adam Petri as a
mathematical tool for modeling and
analyzing processes. One of the strengths
of this tool is that it enables processes to be
defined graphically. Despite the fact that
Petri nets are graphical, they have a strong
mathematical foundation. Unlike many
other schematic techniques, they are
entirely formalized.
A straightforward application of Petri nets
can model workflow processes to some
extent, but there are also some limitations
[4]. Therefore, a workflow language YAWL
(Yet Another Workflow Language) is
proposed in [4] that solves most of these
limitations. Axxerion includes concepts from
Petri nets and YAWL as a basis for its
workflow management module.

Definition

Figure 3 shows the symbols that are used
in the Axxerion workflow management
module. Generally speaking, a workflow
definition consists of places and tasks,
connected by connectors.
Each workflow has one start place. When
the workflow is executed, a token is put in
the start place. Subsequently, the token
can enable one or more tasks. If the task is
an or-join task, only one token needs to be
present in its input places to make it
enabled. If the task is an and-join task, all
of its input places need to contain a token
(there are exceptions however, as we will
see later).
An enabled task can be executed, resulting
in input tokens being consumed and output
tokens being produced. An or-split task

creates only one token, for example a
request task produces a token for the state
'rejected' or for the state 'accepted'. An
and-split task creates tokens for all enabled
outgoing connectors. For example, when
making a reservation a token is created for
activating a task for reserving a room and
another token for reserving equipment.

Symbol Description

Place

Start Place

Connector

Task

Or-split Task

Or-join Task

And-split Task

And-join Task

Sub workflow Task

Resource Task

Automatic Task

Trigger

Cancel Group

Figure 3. Workflow symbols.

Outgoing connectors from a task can have
conditions attached to them. An output
token is only generated when these
conditions are satisfied. Conditions attached
to connectors are based on business data of
the underlying object and can be easily
specified in the user interface. For more
complex conditions, it is possible to use
scripts.
It is also possible to attach commands to
outgoing connectors. When executing the
workflow, such a command can be
activated by the user. Execution of a
command can result in an output token
being created at the end of the connector.
Optionally a command can update business
data as well, directly or via scripts. In the
user interface, commands and conditions

Axxerion Workflow Management 3

can be displayed as labels to the
connectors.
A resource task is a task that is assigned to
users from specified user groups. When
such a task is enabled during the execution
of the workflow, tasks are generated for all
the members of these user groups. The
users can then pull the task from their task
list and execute it. It can be specified in the
outgoing connectors how many users
should complete the task. For instance, it
can be specified that two users from the
user group 'Reviewer' need to approve a
document before it can be published.
An automatic task is a task that is
automatically completed by the system
during execution of the workflow. One
useful application of an automatic task, in
combination with a trigger, is to define a
'time-out' task. After a specific time defined
by a trigger, the time-out task will be
automatically completed. For instance, if
the workflow is waiting on a form to be
completed by a user, but the user has not
reacted for a week, the workflow can
automatically advance to the next step by
executing the time-out task. In the
workflow of figure 1 and 2 an example is
shown of such an automatic time-out task.

Workflow Execution Example

We will explain the execution of a workflow
in the Axxerion workflow management
module according to a relatively simple
quotation workflow example (see figure 4).

Figure 4. Quotation workflow definition.

The quotation can have 5 states: 'Draft',
'Submitted', 'Rework', 'Approved' and
'Cancelled'. These states correspond to the
5 places in the workflow. There are three
tasks: 'Submit', 'Review' and 'Cancel'. The
task 'Submit' is an or-join task which is
carried out by the creator of the quotation.
The 'Review' task is an or-split task,

carried out by the sales manager. The task
'Cancel' is a task connected to a cancel
group (depicted by the grey rectangle), and
can be carried out by the creator or the
sales manager.

Figure 5. Token in start place, Submit task enabled.

When the workflow is started, one token is
put in the start place 'Draft'. Thus, task
'Submit' is enabled and assigned to the
creator. This is shown in figure 5. Enabled
places and tasks are drawn in black, the
rest is drawn in grey. When the submit task
is enabled, the user can enter data in the
screen displayed in figure 6. Most fields are
editable. The buttons at the bottom of the
screen correspond to commands that are
specified with the outgoing connectors of
the tasks that the current user has. In the
screen in figure 6, the 'Submit' button is
displayed, because this corresponds to the
command that is attached to the outgoing
connector from the 'Submit' task (the 'Back'
and 'Ok' buttons displayed in figure 6 are
standard system buttons, that are not
related to tasks).

Figure 6. Quotation screen in draft state.

When the task 'Submit' is executed (i.e. the
'Submit' button is pressed), the token from
place 'Draft' is consumed and a new token
is produced in place 'Submitted' (see figure
6). Now the task 'Review' is enabled and
assigned to the sales manager. In addition
the task 'Cancel' is enabled because there is
a token in the cancel group.

Axxerion Workflow Management 4

Figure 7. Quotation submitted.

When the sales manager enters the system,
the 'Review' task is displayed in the task
list. When this task is opened, the
quotation screen is displayed, see figure 8.
The buttons at the bottom of the screen
correspond to the outgoing connectors of
the tasks for the sales manager. The
'Cancel' button corresponds to the outgoing
connector from the 'Cancel' task, and the
'Rework' and 'Approve' buttons correspond
to the outgoing connectors from the
'Review' task. Compared to figure 6, the
access rights for the fields have changed.
Access rights depend among others on user
group and workflow state. In the submitted
state, the sales manager can look at the
data, but can not modify the data.

Figure 8. Quotation screen in submitted state.

In the task 'Review', the sales manager can
decide if the quotation can be approved or
if it needs more work. If it is decided to
rework the quotation (the 'Rework' button
is pressed), the token will go to the place
'Rework' and the 'Submit' task will be
enabled again (see figure 9). Note that the
task 'Cancel' is still enabled because there
still is a token in the cancel group
rectangle.

Figure 9. Quotation needs more work.

Now the quotation can be submitted again,
and after another review it can be approved
(see figure 10). When the token is in the
place 'Approved', there are no more
enabled tasks. Completion of the workflow
is implicit: if no more tasks are enabled,
the workflow is completed.

Figure 10. Quotation approved, workflow completed.

This quotation workflow is a simple
example. The workflow in figure 1 and 2 is
more complicated because there are
parallel paths and there is a
synchronization point.

Implementation

The Axxerion workflow management
module is implemented in Java in a J2EE
environment. The workflows can be
designed and executed in a web browser,
using html and a Java applet. This enables
dynamic placing and moving of the various
workflow items. The pictures in this paper
are all generated from this applet, so this is
also what users can see.
Because the workflow system is very tightly
integrated with the rest of the Axxerion
workplace automation system, performance
of the application can be optimized to a
large extent. This is very important,
because the workflow is used for access
rights checking as well. To render a screen

Axxerion Workflow Management 5

in this system, potentially very many
access rights checks have to be made.
All data required for the workflow definition
is stored in a relational database and can
be changed dynamically without
recompiling the system. The applet for
workflow design and visualization is
downloaded automatically, which typically
takes less than 2 seconds. All
communication between the applet and the
server is handled via XML over HTTP(s) so
that no special network infrastructure is
required. On the server side, the workflow
definitions can be exported to XML and
imported on other servers running
Axxerion, regardless of the underlying
relational database.

Workflow Patterns

Different perspectives can be taken to
evaluate a workflow system. The control
flow perspective is the main perspective
and deals with the workflow structure, the
tasks and their execution. Other
perspectives such as the data or
organizational perspectives rest on it.
The workflow patterns [2] mainly consider
the control flow perspective of the
workflow system. To assess the capabilities
of the Axxerion workflow management
module we will evaluate it according to
these workflow patterns. The patterns
range from fairly simple constructs to
complex routing primitives.

Pattern 1: Sequence
In the sequence pattern, a task B in the
workflow is enabled after completion of
another task A in the same process.
This pattern can be modelled in Axxerion as
shown in figure 11.

Figure 11. Sequence.

This pattern can also be seen in the
quotation example we showed: Task
'Review' is enabled after task 'Submit' has
been completed.

Pattern 2: Parallel Split
The parallel split pattern is defined as a
point in the workflow where a single thread
of control splits into multiple threads of

control which can be executed in parallel,
thus allowing tasks to be executed
simultaneously or in any order.
This pattern is supported in Axxerion by the
and-split task, as shown in figure 12. Task
A and B are both executed, in any order.

Figure 12. Parallel split and synchronization.

The parallel split can also be seen in figure
1. The initial single thread for the request
splits in two threads: one to send a form,
and one to evaluate the request.

Pattern 3: Synchronization
The synchronization pattern is a point in
the workflow where multiple parallel
threads converge into one single thread of
control, thus synchronizing multiple
threads.
This pattern is supported in Axxerion by the
and-join task. An example can again be
seen in figure 12 and figure 1. At the end of
the workflow in figure 1, the 'Archive' task
is executed, which synchronizes the two
input threads and produces one output
token.

Pattern 4: Exclusive Choice
The exclusive choice pattern is defined as a
point in the workflow where, based on a
decision, one of several branches is chosen.

Figure 13. Exclusive choice and simple merge.

Axxerion Workflow Management 6

This pattern is supported in Axxerion by the
or-split task, as shown in figure 13. Either
Task A or Task B will be executed
depending on the choice that the user
makes.
Another example of this pattern can be
found in figure 4 in the 'Review' task.
Depending on the sales manager's decision,
the 'Approved' or the 'Rework' branch is
chosen.

Pattern 5: Simple Merge
The simple merge pattern is defined as a
point in the workflow where two or more
alternative branches come together without
synchronization. It is an assumption of this
pattern that the incoming branches are not
executed in parallel.
This pattern is supported in Axxerion by the
or-join task, see figure 13.

Branching and Synchronization

The following patterns are more advanced
patterns for branching and synchronization.
As opposed to the previous patterns, these
patterns do not have straightforward
support in most workflow engines.

Pattern 6: Multi Choice
The multi choice pattern is defined as a
point in the workflow where, based on
decisions, a number of branches is chosen.
In Axxerion, this pattern is implemented as
an and-split task with conditions on the
connectors. The user can select in the form
belonging to the workflow which branches
should be taken. In figure 14, an example
is shown. When the user carries out the
task 'Submit', any combination of a flight,
hotel and car booking can be selected.
When 'Submit' is executed, the workflow
engine can determine the branches that
should be taken by examining the

conditions on the outgoing connectors.
Suppose that a flight and a hotel booking
have been selected, then the workflow
execution looks like figure 15.

Figure 15. Multi choice, taking two branches.

The book flight and book hotel branches
have been chosen, and there is no token in
the book car branch.

Pattern 7: Synchronizing Merge
The synchronizing merge is defined as a
point in the workflow where multiple paths
converge into one single thread. If more
than one path is taken, synchronization of
the active threads needs to take place. If
only one path is taken, the alternative
branches should reconverge without
synchronization.
The synchronizing merge is implemented in
Axxerion with the and-join task. An and-
join task can optionally be linked to a
corresponding and-split task. At runtime,
the and-join task can query the
corresponding and-split task that was
executed about the branches that were
taken. Using this information, it is possible
that the and-join task is enabled without all
its input places containing tokens. Instead
it can be enabled by just the branches that
were taken. It is possible that the whole

Axxerion Workflow Management 7

Figure 14. Travel request workflow, showing multi choice and synchronizing merge.

“and-split-join-block” is carried out inside a
loop.
Note that in this approach it is not allowed
for tokens to “escape” or “enter” the paths
in between the and-split and the and-join.
The same number of tokens that leaves the
and-split task should arrive at the and-join.
For instance, it is not allowed that the 'Book
flight' task is an or-join task that takes
tokens from another execution path.

Figure 16. Synchronizing merge, enabled by 2 tokens.

An example is shown in figure 16. The flight
and hotel have been booked, and the
'Confirm' task (which is a synchronizing
merge) is enabled.

Pattern 8: Multi Merge
The multi merge is defined as a point in the
workflow where two or more branches
reconverge without synchronization. If
more than one branch gets activated,
possibly concurrently, the task following the
merge is started for every activation of
every incoming branch.

Figure 17. Multi merge execution.

This pattern is implemented in Axxerion
using the or-join task. In figure 17 the
effect of this pattern is visualized. At first
there are two tokens active in parallel.
When the multi merge task is executed,
one token is put in the output place. Then
the multi merge task is still enabled,
because it consumed only one token. When
it is again executed, a second token is put
in the output place and the multi merge is
finished.

Pattern 9: Discriminator
The discriminator is a point in the workflow
that waits for one of the incoming branches
to complete before activating the
subsequent task. It then ignores all
remaining branches.

Figure 18. Discriminator execution.

The discriminator can be implemented in
Axxerion using the or-join task in
combination with a cancel group, see figure
18. The discriminator task is enabled when
either task A, B or C has been executed.
When the discriminator is executed, all
tokens in the cancel group are 'cleaned up'.

Pattern 10: Arbitrary Cycles
An arbitrary cycle is defined as a point in
the workflow where one or more tasks can
be done repeatedly.
An example of how this pattern is
supported in Axxerion is shown in figure 19.

Axxerion Workflow Management 8

The parallel split task splits into a branch to
create a delivery, and a branch to decide if
another delivery is needed. If yes, the
parallel split is executed again, thus
creating another delivery task.

Figure 19. Arbitrary cycles.

Pattern 11: Implicit Termination
A given subprocess should be terminated
when there is nothing else to be done. In
other words, there are no tasks in the
workflow and no other tasks can be made
active.
This is standard behavior in the Axxerion
workflow management module. For
instance, in figure 17 the workflow has
ended when all tokens are in the final place
(the place that has no outgoing
connectors).

Multiple Instances

The following patterns involve tasks that
have multiple instances running during
execution of the workflow. There are two
types of requirements. The first
requirement is the ability to launch multiple
instances of a task or subprocess. The
second requirement is the ability to
synchronize these instances and continue
after all instances have been handled.

Pattern 12: Multiple Instances Without
Synchronization
Within the context of a single workflow
instance, multiple instances of a task can
be created. To see how this pattern can be
implemented, we can again look at figure
19. During execution of this workflow,
multiple instances of the task delivery can
be created.
Actually, multiple task instance support is
built-in in Axxerion at a lower level as well.
For any task, user groups can be specified
that should carry out the task. When the
task is instantiated during the course of the
workflow, tasks are created for each person

in the user group. These persons see the
task in their task list, and can then decide
to handle the task. In addition, with every
outgoing connector from a task, it can be
specified how many task instances should
be executed to advance on the branch.

Figure 20. Document approval workflow.

For instance, in the document approval
workflow of figure 20, the task 'Publish' is
assigned to the user group 'Reviewer'. To
go from state 'Review' to 'Approved', two
users from the reviewer user group need to
approve the document. If only one of them
rejects the document, it is put back in the
state 'Draft'.

Pattern 13: Multiple Instances With a Priori
Design Time Knowledge
For one process instance a task is enabled
multiple times. The number of instances of
a given task for a given process is known at
design time. Once all instances are
completed some other task needs to be
started.
This pattern can be implemented in
Axxerion in various ways. A first example is
the document approval workflow in figure
20. At design time, it can be specified that
all reviewers should get the 'Publish' task.
It can also be specified how many reviewers
should approve before the document is
approved.

Figure 21. Request for quotation workflow.

Another example is displayed in figure 21.
This is a request for quotation workflow. It

Axxerion Workflow Management 9

uses sub workflows for the actual
quotations. When the 'Quotations' sub
workflow task is enabled, instances of the
quotation workflow (see figure 4) are
executed that are linked with the main
request workflow. From a data perspective,
the quotation objects are linked to the
request object, and the workflow instances
are linked to the quotations and request.
When the request for quotation workflow is
started, first general information on the
request is entered, like a description,
needed items, the due date, etc. The
request is then sent out to a number of
contractors, who will have to send back a
quotation before the due date. This state of
the workflow is displayed in figure 22.

Figure 22. Main workflow is waiting for quotations.

The system automatically creates a
specified number of incoming quotations (in
this case 2), that are ready to be filled out
when the quotations from the contractors
come in. When more quotations come in,
they can be added at runtime, and they
will be linked to the main request workflow
as well. When the incoming quotations
have been approved or cancelled, they
signal the main workflow of the completion
of a sub workflow.
In the workflow definition, it has been
specified that the connector going from the
'Quotations' subworkflow task to the
'Received' place is enabled when 2
incoming quotations are approved. So when
2 quotations have been approved, the main
workflow will advance to the 'Received'
state.

Figure 23. Sub workflows have finished.

Subsequently, one quotation can be
selected by the purchase manager in the
'Select' task. In this task, the purchase
manager can also decide to cancel the
request, see figure 23.
If there are no 2 approved quotations
before the due date, the automatic time-out
task will be executed. This will result in all
non-completed quotations to be cancelled,
because the sub workflows are not enabled
anymore. The purchase manager can then
still decide what to do with the completed
and/or cancelled quotations.

Pattern 14: Multiple Instances With a Priori
Runtime Knowledge
For one case a task is enabled multiple
times. The number of instances of a given
task for a given case varies, but is known at
some stage during runtime before the
instances of the task have to be created.
Once all instances are completed some
other task needs to be started.
This pattern is supported by Axxerion as
shown in figure 21. The number of
quotations can be specified at runtime.

Pattern 15: Multiple Instances Without a
Priori Runtime Knowledge
For one case a task is enabled multiple
times. The number of instances of a given
task for a given case is not known during
design time, nor is it known at any stage
during runtime before the instances of the
task have to be created. Once all instances
are completed some other task needs to be
started. The difference with pattern 14 is
that even while some of the instances are
being executed or already completed, new
ones can be created.
This pattern is supported as well by
Axxerion, as shown in figure 21. At
runtime, quotations can be added that
automatically link as a sub workflow to the
main request workflow.

State-based Patterns

In real workflows, most workflow instances
are in a state awaiting processing rather
than being processed. In many workflow
systems the notion of state is interpreted in
a narrower fashion and is essentially
reduced to the concept of data. As this
section will illustrate, there are scenarios
where an explicit notion of state is required.

Axxerion Workflow Management 10

Pattern 16: Deferred Choice
The deferred choice pattern is defined as a
point in the workflow process where one of
several branches is chosen. In contrast to
pattern 4 (exclusive choice), the choice is
not made explicitly, but several choices are
offered to the environment. Once a branch
is activated, the other alternative branches
are withdrawn. It is important to note that
the moment of choice is delayed until
processing in one of the alternative
branches is actually started. The moment of
choice is as late as possible.

Figure 24. Difference explicit and implicit choice.

Figure 24 illustrates the difficulty in
supporting this pattern when the workflow
language does not support states directly.
The top workflow is made using only tasks,
the bottom workflow also has states (the
circles). The workflow is about a document
approval. The approval can be made by the
manager, or alternatively by two
coordinators. In the top workflow, the only
way to make the distinction between the
branches is make a separate task to decide
which approval to take. In the bottom
workflow, this decision is made implicitly by
executing an approval in one branch.
Since Axxerion has the notion of states, this
pattern is straightforward to implement.
Another example can be seen in figure 21.
The choice between time-out or advancing
when 2 quotations are approved is only
made at the time one of these steps is
completed. Such a time-out is difficult to
model when the workflow language does
not support states.

Pattern 17: Interleaved Parallel Routing
A set of tasks is executed in an arbitrary
order. Each task in the set is executed, the
order is decided at runtime, and no two
tasks are executed at the same moment.
This pattern can be implemented directly in
Axxerion because states are supported.

Figure 25. Interleaved parallel routing.

In figure 25, an example of interleaved
parallel routing is shown. In this example,
the Navy requires every job applicant to
take two tests: a physical test and a mental
test. These tests can be conducted in any
order but not at the same time. To realize
the desired behavior, a mutual exclusion
place is added to synchronize tokens. As
can be seen in figure 25, initially both tests
are enabled. After the physical test has
started, the mental test is not enabled.
When the physical test has ended, the
mental test will be enabled again.

Pattern 18: Milestone
The enabling of a task depends on the case
being in a specified state. The task is only
enabled when a certain milestone has been
reached, that is in another parallel thread
of execution.
The milestone pattern can be implemented
directly in Axxerion. An example is shown
in figure 26. This example is a step further
in the execution than what is shown in
figure 2. The milestone is the state where
the two parallel paths are synchronized.

Axxerion Workflow Management 11

Cancellation Patterns

The following patterns deal with the ability
to cancel tasks in a workflow.

Pattern 19: Cancel Activity
An enabled task is cancelled, meaning that
the thread waiting for the execution of the
task is removed.The cancel activity or task
pattern can be implemented directly in
Axxerion. We have seen several examples
of this pattern related to the deferred
choice pattern. For instance, in figure 2,
when the time out task is executed, the
process form task is cancelled.

Pattern 20: Cancel Case
A workflow instance or case is removed
completely. Even if parts of the workflow
are instantiated multiple times, all
descendants are removed.
For this pattern, the cancel group can be
used. When a task connected to a cancel
group is executed, all tokens in the cancel
group are removed. Also, all tasks related
to those tokens are cancelled. For instance
in figure 26, the workflow case can be
cancelled at once by executing the cancel
task.

Scripting Support

All patterns described in this paper have
been created graphically in a web browser
without the need for any programming.
Axxerion does however offer scripting for
defining more complex decision rules and
business logic. The scripts are written in
Java and are compiled at run time.
Scripts can be used as conditions on
connectors, for example an approval branch
is only enabled when the 'amount' data
field in an invoice exceeds '1000'. Scripts
can also be used to send messages to other
systems, call on internal APIs in the

Axxerion system or to create, delete or
update information. Scripting does require
a good knowledge of programming and
data structures and is typically only used by
advanced users and system integrators. A
detailed discussion on the Axxerion
workflow scripting capabilities is beyond the
scope of this paper.

Conclusion

We have given an overview of the workflow
functionality offered in the Axxerion
workplace automation system. The system
was evaluated according to the workflow
patterns in [2]. It has been shown that
Axxerion supports all workflow patterns in a
direct way, without the need to resort to
additional scripting or programming. It has
also been demonstrated how advanced
workflow capabilities can be integrated in a
graphical web environment.The focus of
this paper has been mainly on the control
flow perspective of the Axxerion system.
For an overview of the other aspects of the
system we refer to the Axxerion whitepaper
[5].

Authors

Martin Waardenburg and Maarten van
Emmerik each have over 15 years
experience in development of enterprise
systems for computer-aided design and
business process management. They
founded Axxerion to develop a new
generation workplace and facility
automation software. Workflow
management, based on the concepts in this
paper, is a key element in this software.

Axxerion Workflow Management 12

Figure 26. Milestone.

References

[1] Workflow Management Coalition, non-
profit organization (www.wfmc.org).
[2] Workflow Patterns - W.M.P. van der
Aalst, A.H.M. ter Hofstede, B. Kiepuszewski
and A.P. Barros, 2002
(www.workflowpatterns.com)

[3] Workflow Management, Models,
Methods and Systems – Wil van der Aalst
and Kees van Hee, MIT Press, 2002
[4] YAWL: Yet Another Workflow Language
– W.M.P. van der Aalst and A.H.M. ter
Hofstede, 2003 (www.citi.qut.edu.au/yawl)
[5] Workplace and Facility Automation via
the Internet – Maarten van Emmerik and
Martin Waardenburg, 2004
(www.axxerion.com)

Axxerion Workflow Management 13

