

BONITA – Workflow patterns support

Abstract

This document describes how the Bonita workflow implements the 20 workflow patterns

defined by X.Van der Halst. Each pattern is described with an example showing how to

implement the pattern using Bonita workflow.

Christophe Loridan

Jordi Anguela Rosell

BULL R&D

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 2 / 35 -

CHANGES RECORD

RÉFÉRENCES DATE CHANGE

1.0 August, 2004 First version

1.1 April, 2006 Revision

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 3 / 35 -

INDEX

1 INTRODUCTION .. 4

2 WORKFLOW PATTERNS ... 6

2.1 Basic Control Flow Patterns... 6
2.1.1 Pattern 1, Sequence ...6

2.1.2 Pattern 2, Parallel Split ..7

2.1.3 Pattern 3, Synchronization ...8

2.1.4 Pattern 4, Exclusive choice ..9

2.1.5 Pattern 5, Simple Merge ..10

2.2 Advanced Branching and Synchronization Patterns...................... 11
2.2.1 Pattern 6, Multi Choice..11

2.2.2 Pattern 7, Synchronizing Merge...12

2.2.3 Pattern 8, Multi-merge...13

2.2.4 Pattern 9, Discriminator...14

2.2.5 Pattern 9a, N-out-of-M Join...15

2.3 Structural Patterns ... 16
2.3.1 Pattern 10, Arbitrary cycles ...16

2.3.2 Pattern 11, Implicit Termination ..19

2.4 Patterns involving Multiple Instances ... 20
2.4.1 Pattern 12, Multiple instances without synchronization..............................20

2.4.2 Pattern 13, Multiple instances with a Priori Design Time knowledge21

2.4.3 Pattern 14, Multiple instances with a Priori Run Time knowledge22

2.4.4 Pattern 15, Multiple instances without a Priori Run Time knowledge.........23

2.5 State-based Patterns ... 24
2.5.1 Pattern 16, Deferred Choice...24

2.5.2 Pattern 17, Interleaved Parallel Routing...26

2.5.3 Pattern 18, Milestone...28

2.6 Cancellation Patterns.. 30
2.6.1 Pattern 19, Cancel Activity ..30

2.6.2 Pattern 20, Cancel Case ...31

3 NEW WORKFLOW PATTERNS... 32
3.1.1 Pattern Extra 1, Explicit Termination...32

3.1.2 Pattern Extra 2, Cancel Path ..33

4 HOW TO RUN THE TESTS ... 34

5 APENDIX: LEGEND ... 35

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 4 / 35 -

1 INTRODUCTION

BONITA is a workflow system featuring a lot of innovative features like activities that can

start in anticipation, awareness infrastructure allowing users to be notified of any events

occurring during the execution in a given process , or automatic activation of user’s code

according to a defined activity life cycle. Traditional workflow features like dynamic

user/roles resolution, activity performer and sequential execution are also included in Bonita

to support both cooperative and administrative workflow processes.

BONITA is a fully conformant J2EE application, taking advantage of the power and

robustness of the J2EE platform. The BONITA API is accessible either thru EJB’s.

Processes are created using a graphical definition tool or by using the Project interface API. A

process is defined as a set of activities and an associated execution model. The enactment

engine takes care of scheduling the activities according to the defined execution model. The

User API provides full control over the execution of the process, for example allowing

starting or stopping an activity. BONITA supports also dynamic modification of an existing

process, that is the Project interface can be used against a running process.

Bonita Manager

Bonita Java Web Start

Application

Browser

YOUR APPLICATION

DB
Business Partner or

other system

Existing System

ERP System
LDAP

User Registration

Session Bean

Project Session Bean

User Session Bean

CMP Entity Beans

Bean Container
Message Driven Bean

J

A

A

S

Engine Session Bean

 Bonita API User Registration API User API Project API

Authentication &

Acces Control

Set & Query

Execute

Bonita

Hooks

Execute

OR

JMS

Topics

Listens

Instant Messaging Or

Mailer

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 5 / 35 -

• The User Registration Session bean provide the interface for :

- User creation and management

- Group creation

• The Project Session Bean provides the interface for :

- Creation of the process

- Definition of nodes and edges

- Modifications of properties

• The User Session Bean implements commands and queries related to

- Projects of a user

- Todo List

- Executing activities

- Start/terminate/Cancel commands

• The Engine Bean is a special session bean that implements the state machine and

controls Process execution. It is not part of the API.

• Each method call in the Bonita API involving a state modification of the workflow

system is registered into a JMS Topic. Depending on user preferences (defined while

user creation), the Message Driven Bean notifies the user either using Instant

Messaging services, either Traditional Mailer.

Bonita Hooks can access existing systems in the SI (Erp or whatever else), or Business

partner systems using JCA or Web services.

Both User and project APIs are available either as Session Bean, or as web services.

Note: for a detailed insight into the Bonita workflow features please refer to the Bonita

API document: http://bonita.objectweb.org/html/Documentation/docs/bonitaAPI.pdf

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 6 / 35 -

2 WORKFLOW PATTERNS

All these patterns can be found at: www.workflowpatterns.com

2.1 Basic Control Flow Patterns

2.1.1 Pattern 1, Sequence

Description

An activity in a workflow process is enabled after the completion of another activity in the

same process.

Synonyms

Sequential routing or serial routing.

Examples

- Activity send_bill is executed after the execution of activity send_goods.

- An insurance claim is evaluated after the client's file is retrieved.

- Activity add_air_miles is executed after the execution of activity book_flight.

Support

This pattern is supported by Bonita.

In this example, the activities send_goods and send_bill are linked by

an unconditional arrow expressing an outgoing transition from

send_goods to send_bill. In this example, we have execute the

activity send_goods so its state is terminated (represented in cyan),

meaning its execution has finished. The activity send_bill is in ready

state (represented in yellow) meaning it can be started immediately

because the previous activity has already finished.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 7 / 35 -

2.1.2 Pattern 2, Parallel Split

Description

A point in the workflow process where a single thread of control splits into multiple threads

of control which can be executed in parallel, thus allowing activities to be executed

simultaneously or in any order.

Synonyms

AND-split, parallel routing or fork.

Examples

- The execution of the activity payment enables the execution of the activities

ship_goods and inform_customer.

- After registering an insurance claim two parallel subprocesses are triggered: one for

checking the policy of the customer and one for assessing the actual damage.

Support

This pattern is supported by Bonita.

In this example, the activities inform_costumer

and ship_goods can be executed in parallel. They

are both in initial state (represented in grey). Note

that there is no need to define a specific routing

node to use this pattern. The activity payment is a

regular activity that has two outgoing transitions

without conditions.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 8 / 35 -

2.1.3 Pattern 3, Synchronization

Description

A point in the workflow process where multiple parallel sub processes/activities converge into

one single thread of control, thus synchronizing multiple threads. It is an assumption of this

pattern that each incoming branch of a synchronizer is executed only once (if this is not the

case, then see Patterns 13-15 (Multiple Instances Requiring Synchronization)).

Synonyms

AND-join, rendezvous or synchronizer.

Examples

- Activity archive is enabled after the completion of both activity send_tickets and

activity receive_payment.

- Insurance claims are evaluated after the policy has been checked and the actual

damage has been assessed.

Support

This pattern is supported by Bonita.

In this example, the activity receive_payment is in

terminated state, while activity sent_tickets is in

executing state. The activity archive is in state initial

(represented in grey). This activity will not be

allowed to start until receive_payment and

sent_tickets are both terminated. Again, note that

archive is not a specific routing node but a regular

activity that also acts as an implicit AND-join.

When both activities are terminated the state of

archive activity changes to ready (represented in

yellow).

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 9 / 35 -

2.1.4 Pattern 4, Exclusive choice

Description

A point in the workflow process where, based on a decision or workflow control data, one of

several branches is chosen.

Synonyms

XOR-split, conditional routing, switch or decision.

Examples

- Activity evaluate_claim is followed by either pay_damage or contact_customer.

- Based on the workload, a processed tax declaration is either checked using a simple

administrative procedure or is thoroughly evaluated by a senior employee.

Support

This pattern is supported by Bonita.

The activity evaluate_claim has two outgoing transitions.

They carry mutually exclusive conditions, therefore

allowing the exclusiveness of choice. In the example, the

exclusive choice has been made: evaluate_claim is in

state terminated, contact_costumer is in state dead

(because the corresponding condition evaluated to false),

while pay_damage is ready to be started.

Let’s get some basic insight how conditions work in Bonita. A condition is related to the

process control data. Control data are associated to activities and are called properties.

Conditions are expressed in java. Two scopes for the properties are defined in Bonita

workflow: project properties that are accessible from all activities inside the project and node

properties, where the data stored in the property is only accessible from a concrete node.

In the example above, there is a node property named pay. It is associated to the activity

evaluate_claim and has the value “true”. The transition between evaluate_claim and

pay_damage has a condition expressed as pay.equals(“true”), while the transition between

evaluate_claim and contact_costumer has a condition expressed as pay.equals(“false”). This

configuration allows the exclusiveness of choice between those activities.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 10 / 35 -

2.1.5 Pattern 5, Simple Merge

Description

A point in the workflow process where two or more alternative branches come together

without synchronization. It is an assumption of this pattern that none of the alternative

branches is ever executed in parallel (if this is not the case, then see Pattern 8 (Multi-merge)

or Pattern 9 (Discriminator)).

Synonyms

XOR-join, asynchronous join or merge.

Examples

- Activity archive_claim is enabled after either pay_damage or contact_customer is

executed.

- After the payment is received or the credit is granted the car is delivered to the

customer.

Support

This pattern is supported by Bonita.

To select a path between different

options Bonita uses OR-JOIN activities.

A new activity of this type called

archive_claim is added to do this merge.

We can start archive_claim activity

because pay_damage has already

finished.

If contact_costumer activity is executed

at this point, its termination will not

trigger the execution of archive_claim

activity again.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 11 / 35 -

2.2 Advanced Branching and Synchronization
Patterns

2.2.1 Pattern 6, Multi Choice

Description

A point in the workflow process where, based on a decision or workflow control data, a

number of branches are chosen.

Synonyms

Conditional routing, selection, OR-split.

Examples

- After executing the activity evaluate_damage the activity contact_fire_department

or the activity contact_insurance_company is executed. At least one of these

activities is executed. However, it is also possible that both need to be executed.

Support

This pattern is supported by BONITA.

The way to implement this pattern is specifying conditions on the transitions. If more than one

condition is true when they are evaluated then more than path is taken.

The evaluate_damage activity has three

properties named call_fire_department,

call_police and call_hospital.

Transitions from evaluate_damage to

contact_police, contact_fire_department, and

contact_hospital have a condition expression

related these properties.

Only call_police and call_hospital node

properties are set to “true”. Because evaluate_damage is in terminated state, both conditions

related to contact_police and contact_hospital have succeeded: these activities are ready to be

executed. The condition related to contact_fire_departement has failed. This activity is in

dead state.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 12 / 35 -

2.2.2 Pattern 7, Synchronizing Merge

Description

A point in the process where multiple paths converge into one single thread.

• If more than one path is taken, synchronization should occur.

• If only one path is taken, the alternative branches should converge without

synchronization. Also known as Synchronizing join.

It is an assumption of this pattern that a branch that has already been activated, cannot be

activated again while the merge is still waiting for other branches to complete.

Synonyms

Synchronizing join.

Examples

- Extending the example of Pattern 6 (Multi-choice), after either or both of the

activities contact_fire_department and contact_insurance_company have been

completed (depending on whether they were executed at all), the activity

submit_report needs to be performed (exactly once).

Support

This pattern is partially supported by Bonita.

AND-JOIN is not suitable here because some branches could not be taken. OR-JOIN is not

suitable either, the first branch that finishes the execution is considered and there is not

synchronization with other executing branches.

An implementation of this pattern with Bonita workflow is possible only if we have a simple

case. Let’s see an example with where we have two possible paths:

The idea is to add an

extra activity

(contact_both) that

executes both

contact_insurance and

contact_fire_department

activities.

evaluate_damage is

implemented as an

exclusive choice (see

pattern 4) selecting one

of the paths.

This solution is not suitable when we have lots of possible paths.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 13 / 35 -

2.2.3 Pattern 8, Multi-merge

Description

A point in a workflow process where two or more branches reconverge without

synchronization. If more than one branch gets activated, possibly concurrently, the activity

following the merge is started for every activation of every incoming branch.

Examples

- Sometimes two or more parallel branches share the same ending. Instead of

replicating this (potentially complicated) process for every branch, a multi-merge

can be used. A simple example of this would be two activities audit_application

and process_application running in parallel which should both be followed by an

activity close_case.

Support

This pattern is supported by Bonita. The purpose “sharing of activity definition” of this

pattern can however be achieved thanks to the concept of Bonita sub process.

In this example, close_case1 and close_case2 are two

activities that are mapped on the sub process close_case

(not shown here). The definition of close_case sub process

can be as complex as needed.

In this example, assuming that the transitions do not hold

any condition, one instance of close_case will be created after each completion of

audit_application and process_aplication activities.

The use of activity properties can be very useful to configure the parameters of each sub

process.

After the sub processes execution, we could add another AND-JOIN Bonita activity to

synchronize both.

An asynchronous behavior can also be achieved, thanks to the use of Bonita Hooks

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 14 / 35 -

2.2.4 Pattern 9, Discriminator

Description

The discriminator is a point in a workflow process that waits for one of the incoming branches

to complete before activating the subsequent activity. From that moment on it waits for all

remaining branches to complete and "ignores" them. Once all incoming branches have been

triggered, it resets itself so that it can be triggered again (which is important otherwise it could

not really be used in the context of a loop).

Examples

- To improve query response time, a complex search is sent to two different

databases over the Internet. The first one that comes up with the result should

proceed the flow. The second result is ignored.

Support

This pattern is supported by Bonita.

The behavior of this pattern is very

similar to Simple Merge pattern. As

seen before, an activity with type OR-

JOIN will trigger the execution of

downwards activities only once.

Nevertheless, Bonita engine will not

wait for other branches to complete: it

will just process the termination Hooks of the other branches as they occur.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 15 / 35 -

2.2.5 Pattern 9a, N-out-of-M Join

Description

N-out-of-M Join is a point in a workflow process where M parallel paths converge into one.

The subsequent activity should be activated once N paths have completed. Completion of all

remaining paths should be ignored. Similarly to the discriminator, once all incoming

branches have "fired", the join resets itself so that it can fire again.

Examples

- A paper needs to be sent to three external reviewers. Upon receiving two reviews

the paper can be processed. The third review can be ignored.

Support

This pattern is not supported in Bonita workflow.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 16 / 35 -

2.3 Structural Patterns

2.3.1 Pattern 10, Arbitrary cycles

Description

A point in a workflow process where one or more activities can be done repeatedly.

There are two types of cycles: structured and non structured.

- A structured cycle has at maximum one entry and/or one exit point.

- A non structured cycle may have several entry points, and/or several exit points from

the cycle, in another words, it doesn’t have a predefined entry and exit points.

Synonyms

Loop, iteration or cycle.

Examples

- A classical example to see the use of iterations is an approval process where an

user request a demand that has be approved for another person. If the demand is

approved then it is processed, if not, then the flow is redirect to the first activity

again to able to change the request.

Support

Bonita supports both structured and non structured cycles.

Bonita has some rules when a process has iterations to guarantee its correct behavior:

Premise: it is not possible to continue the execution inside an iteration and leave it at the

same time.

1. Only one iteration is allowed between two connected nodes

2. It’s possible to have more than one iteration starting in the same node

3. All transitions leaving from a node that starts an iteration must have a condition.

If there is more than one transition leaving from that node, all of them must have a

condition.

4. If we have an extra exit point from iteration it is strictly necessary to have

conditions in all transitions leaving from that node.

These conditions have to be mutually exclusive in order to take a path to continue

iterating or to exit form the iteration.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 17 / 35 -

Extra exit point example

Let’s see how to implement these constraints in our example. In this case we have an approval

process with and extra exit point from the iteration: cancel_demand activity.

In the figure beside, there is an

iteration from approve_demand to

request_demand (represented with

a red arrow added to the original

picture). This cycle enables the

possibility to repeat the request

with different parameters.

Three project properties are used in this example:

- approved property: indicates if we have to leave the iteration through

process_demain activity or if we have to return to request_demand.

- cancel property: used to indicate that the request has been canceled and

cancel_demand activity will be executed.

- iterations property: indicates the number of iterations that we will do.

Transitions conditions are set to accomplish the constraints:

- Transition from request_demand to approve_demand is: cancel.equals("false")

- Transition from request_demand to cancel_demand is: cancel.equals("true")

- Transition from approve_demand to process_demand is:

approved.equals(“true”) && cancel.equals("false")

- Transition from approve_demand to process_demand is: cancel.equals("true")

These conditions are necessary to fulfill constrains 3 and 4. Also, all iterations in Bonita must

have a condition in order to indicate when it has to iterate. This condition, like the properties,

is a java expression. In this example iteration’s condition is:

approved.equals("false") && cancel.equals("false")

This basic example is configured to iterate one time and after that approved property is set to

leave the iteration and enabling the execution of process_demand activity.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 18 / 35 -

Extra entry point example

Now let’s see another example to see an iteration with an extra entry point. In this case we

have the same approval process but now there is an extra activity that sends the possible

options to approve_demand activity.

send_possible_options activity acts as extra

entry point into the iteration.

approve_demand is an AND-JOIN activity

so it will not start until both request_demand

and send_possible_options are terminated.

After iterating, request_demand becomes

ready again, approve_demand is set

initial state and process_demand is

momentarily canceled because the

transition condition fails (it iterates

instead of leaving the iteration).

At the end, when approved property is set

to true it leaves the iteration setting the

state of process_demand to ready.

For more information related with iterations read Bonita documentation

approved.equals("true")

approved.equals("false")

approved.equals("true")

approved.equals("false")

approved.equals("true")

approved.equals("false")

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 19 / 35 -

2.3.2 Pattern 11, Implicit Termination

Description

A given process should be terminated when there is nothing left to be done. In the contrary,

some workflow engines use an explicit Final node: the process terminates only once this node

is reached.

Support

Bonita supports the implicit termination pattern.

This is true for both processes and sub-

processes.

In this example both activities are terminated so

the process is also terminated because there is nothing else to be done.

Bonita supports run-time dynamic modification of a given process instance: in that sense,

there is always potentially something more to be done! Then, an explicit call to the API must

be used to formally terminate the process once all activities are completed.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 20 / 35 -

2.4 Patterns involving Multiple Instances

2.4.1 Pattern 12, Multiple instances without synchronization

Description

Within the context of a single case, multiple instances can be created: a spawn-off facility

allows creating several threads of control which don’t need to be synchronized.

Synonyms

Threading without synchronization, spawn off facility.

Examples

- A customer ordering a book from an electronic bookstore such as Amazon may

order multiple books at the same time. Many of the activities (e.g., billing,

updating customer records, etc.) occur at the level of the order. However, within

the order multiple instances need to be created to handle the activities related to

one individual book (e.g., update stock levels, shipment, etc.). If the activities at

the book level do not need to be synchronized, this pattern can be used.

Support

Bonita supports multiple instances without synchronization pattern.

This is achieved thru the use of java Hooks. Hooks are java codelets executed according to a

defined activity life cycle. By using the Bonita Project API, one can asynchronously launch a

new process instance from the context of one activity.

In this example, order_books activity

instantiates three times book sub process

during the execution of its hook. These sub

processes are independent of send_bill

activity and between them.

Here we can see that book0 and book2 have

been executed (colored in cyan). book1 and

send_bill activities are being executed at the

same time.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 21 / 35 -

2.4.2 Pattern 13, Multiple instances with a Priori Design Time

knowledge

Description

For one process instance, an activity is enabled multiple times. In this usage scenario, the

number of instances to be created is known at design time.

Examples

- The requisition of hazardous material requires three different authorizations.

Support

Bonita supports multiple instances with a priori design time knowledge.

The idea is to follow the same process that in the previous pattern. The difference with the

previous pattern is that know we have another activity (Bonita AND-JOIN activity) that

synchronizes the sub processes defined in the model. Let’s see and example:

hazardous_materials_requisition activity

will instantiate as many times as defined

authorization sub processes. After that,

send_requisition AND-JOIN activity will

synchronize the sub processes.

When all authorizations are accepted

send_requisition activity becomes ready to

be executed.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 22 / 35 -

2.4.3 Pattern 14, Multiple instances with a Priori Run Time knowledge

Description

For one process instance, an activity is enabled multiple times. In this usage scenario, the

number of instances to be created is known only at run time, before the instances of that

activity need to be created. After all instances are completed, some other activity needs to be

started.

Examples
- In the review process of a scientific paper submitted to a journal, the activity

review_paper is instantiated several times depending on the content of the paper,

the availability of referees, and the credentials of the authors. Only if all reviews

have been returned, processing is continued.

- For the processing of an order for multiple books, the activity check_availability is

executed for each individual book. The shipping process starts if the availability of

each book has been checked.

- When booking a trip, the activity book_flight is executed multiple times if the trip

involves multiple flights. Once all bookings are made, the invoice is to be sent to

the client.

- When authorizing a requisition with multiple items, each item has to be authorized

individually by different workflow users. Processing continues if all items have

been handled.

Support

Bonita supports multiple instances with a priori run time knowledge.

This support is provided thanks to two Bonita features: java Hooks and ability to dynamically

modify (e.g. at run time) the definition of a process instance. For a correct design, a sub

process instance is defined in the model an the other replicas are created during the runtime.

When check_book activity defined in

the model is executed a beforeStart

Hook is lunched and creates the

other sub processes as many times as

needed.

When all sub process have finished,

shipping_process (an AND-JOIN

activity) synchronize them an

continues the execution.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 23 / 35 -

2.4.4 Pattern 15, Multiple instances without a Priori Run Time

knowledge

Description

For one process instance, an activity is enabled multiple times. In this usage scenario, the

number of instances to be created is known only at run time. The difference with the previous

pattern is that new instances of that activity may need to be created even after some of them

are already executing (or are terminated). After all instances are completed, some other

activity needs to be started.

Examples

- For the processing of an insurance claim, zero or more eyewitness reports should

be handled. The number of eyewitness reports may vary. Even when processing

eyewitness reports for a given insurance claim, new eyewitnesses may surface and

the number of instances may change.

Support

Bonita supports multiple instances without a priori run time knowledge.

The implementation of this pattern is based on the previous one and with the Bonita feature

that permits to create dynamically more sub process instances during the runtime.

To see and example will suppose the same scenario as in the previous example but now we

will have an extra activity that will create more sub processes when it is executed.

This time we have an activity called

add_books that creates two new sub

processes when it is executed. The

creation of the new sub processes can be

done at any time between order_books

termination and before starting

shipping_process.

In this picture we can see that add_books

activity is executing (coloured in red)

and two more sub processes have been

added while the other activities are being

executed.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 24 / 35 -

2.5 State-based Patterns

2.5.1 Pattern 16, Deferred Choice

Description

A point where one of several branches are chosen. The choice of the branch to execute must

not be based on a pre defined criteria, but rather it should be deferred as lately as possible,

that is delayed until the processing of one of the alternative branch is started

Synonyms

External choice, implicit choice or deferred XOR-split.

Examples

- At certain points during the processing of insurance claims, quality assurance audits

are undertaken at random by a unit external to those processing the claim. The

occurrence of an audit depends on the availability of resources to undertake the audit,

and not on any knowledge related to the insurance claim. Deferred Choices can be

used at points where an audit might be undertaken. The choice is then between the

audit and the next activity in the processing chain. The audit activity triggers the next

activity to preserve the processing chain.

- Business trips require approval before being booked. There are two ways to approve a

task. Either the department head approves the trip (activity A1) or both the project

manager (activity A21) and the financial manager (activity A22) approve the trip. The

latter two activities are executed sequentially and the choice between A1 on the one

hand and A21 and A22 on the other hand is implicit, i.e., at the same time both

activity A1 and activity A21 are offered to the department head and project manager

respectively. The moment one of these activities is selected, the other one disappears.

Support

Bonita supports the deferred choice pattern.

A possible strategy to implement this pattern is to split the

flow in two activities B and C where they wait for a user

action. When B or C is started then a hook is lunched to

deactivate the other sister activity.This solution does not

always work because B and C can be selected/executed at

same time.

A

B C

D

cancel

cancel

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 25 / 35 -

Another solution purposed is to create a new activity E

receiving all triggers that active the alternative branches.

Then, activity E takes the decision of which path has to be

chosen using XOR-split.

Let’s see a Bonita example:

In this case we have an activity called

select_avaliable_truck that decides which truck is

available. This decision is taken inside a Hook during the

activity execution. Once the decision has been taken a

property called truck_number is set to take a specific

transition. Each transition has a condition related with

this property that enables to take one path or another one.

E

B C

D

A

path = C path = B

truck_number.equals("1")

truck_number.equals("2")

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 26 / 35 -

2.5.2 Pattern 17, Interleaved Parallel Routing

Description

A set of activities is executed in an arbitrary order: Each activity in the set is executed, the

order is decided at run-time, and no two activities are executed at the same moment (i.e. no

two activities are active for the same workflow instance at the same time).

Synonyms

Unordered sequence.

Examples

- The Navy requires every job applicant to take two tests: physical_test and mental_test.

These tests can be conducted in any order but not at the same time.

- At the end of each year, a bank executes two activities for each account: add_interest

and charge_credit_card_costs. These activities can be executed in any order. However,

since they both update the account, they cannot be executed at the same time.

Support

Bonita supports the interleaved parallel routing pattern.

The main idea of this solution is to have an activity that implements a deferred choice (see

pattern 16) between the activities that we want to execute and another activity that iterates

until all activities have been done.

In this example,

select_avaliable_test activity

implements deferred the

choice pattern selecting one

of the three tests. In this case,

skill_test has been executed

and decide activity is ready

to be executed. This activity

will iterate until the three

activities are done. Bonita

properties are used to control

which activities have been

done.

test.equals("1")

test.equals("2")

test.equals("3")

(1)

(2)

(physical_test.equals("not_passed")
 || mental_test.equals("not_passed")
 || skill_test.equals("not_passed"))

(2) (1)
(physical_test.equals("passed")
 && mental_test.equals("passed")
 && skill_test.equals("passed"))

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 27 / 35 -

After the first iteration a

different activity is selected.

After the second iteration the

last activity is chosen.

When all activities have been

executed it will not iterate

again and next activity

(tests_report) becomes ready

to executed.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 28 / 35 -

2.5.3 Pattern 18, Milestone

Description

The enabling of an activity depends on the case being in a specified state, i.e. the activity is

only enabled if a certain milestone has been reached which did not expire yet. Consider three

activities named A, B, and C. Activity A is only enabled if activity B has been executed and C

has not been executed yet, i.e. A is not enabled before the execution of B and A is not enabled

after the execution of C.

Synonyms

Test arc, deadline, state condition or withdraw message.

Examples

- In a travel agency, flights, rental cars, and hotels may be booked as long as the invoice

is not printed.

- A customer can withdraw purchase orders until two days before the planned delivery.

- A customer can claim air miles until six months after the flight.

Support

This pattern is support in Bonita.

To achieve it two different solutions are purposed:

� Using a Hook (in C activity) that before starting C it cancels A if it is in ready state.

� Use Bonita Deadlines feature to set A availability.

Let’s see an example of each case:

A is only enabled after the execution of B.

This is achieved just setting a transition

from B to A.

Then two possible situations can happen:

OR

As is executed before C

C is executed before A. Then a Hook is

lunched and if A it is in ready state then A

is cancelled.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 29 / 35 -

The second example uses Bonita Deadline feature. For each activity in our process we can set

a collection of deadlines to execute a hook each time that deadline is reached.

In this example we have process for booking books.

We want let the user the possibility to withdraw the

books order. This option will be only enabled during

a certain period after the booking is accepted and

before executing the shipping process.

In this sample, after termination of order_book

activity we have 10sec to execute withdraw_order.

If withdraw_order is not lunched then a

onDeadLine Hook over this activity is raised

cancelling the activity.

As in the previous example, if ship_order is executed before withdraw_order then ship_order

cancels withdraw_order.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 30 / 35 -

2.6 Cancellation Patterns

2.6.1 Pattern 19, Cancel Activity

Description

An enabled activity is disabled, i.e. a thread waiting for the execution of an activity is

removed.

Synonyms

Withdraw activity.

Examples

- Normally, a design is checked by two groups of engineers. However, to meet

deadlines it is possible that one of these checks is withdrawn to be able to meet a

deadline.

- If a customer cancels a request for information, the corresponding activity is disabled.

Support

Bonita supports the ability to cancel an activity.

This cancellation is done using cancelActivity method of the UserSessionBean API. This

method tries to cancel an activity that is executing or in anticipating state. Cancellation is

propagated through those activities that depends on the activity cancelled and will not be able

to execute. Let’s see an example:

While send_goods activity is been execute,

method cancelActivity is called.

Then send_goods activity is cancelled and

also send_bill because it depends on the

previous one.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 31 / 35 -

2.6.2 Pattern 20, Cancel Case

Description

A case, i.e. workflow instance, is removed completely (i.e., even if parts of the process are

instantiated multiple times, all descendants are removed).

Synonyms

Withdraw case.

Examples

- In the process for hiring new employees, an applicant withdraws his/her application.

- A customer withdraws an insurance claim before the final decision is made.

Support

Bonita supports the ability to cancel a whole process.

This cancellation is done using removeProject method of the UserSessionBean API. This

method is used for remove either project instance or a project model. A project model cannot

be deleted if there are instances of the model running.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 32 / 35 -

3 NEW WORKFLOW PATTERNS

3.1.1 Pattern Extra 1, Explicit Termination

Description

A case where a process finishes its execution when a specific node is reached.

Synonyms

Terminal or end activity.

Examples

- Activity archive_claim is enabled after either pay_damage or contact_customer is

executed.

Support

Bonita supports the ability to terminate a process explicitly.

To achieve that it is only necessary to

reach a node called BonitaEnd.

This node is a special activity that

finalizes the executing process when it

is reached.

The difference with Simple Merge pattern is that in this case we don’t need to wait the

execution of contact_costumer activity to finish the process.

In Bonita workflow, implicit termination is done when all activities are either terminated or

cancelled. So in this case is not possible to apply implicit termination pattern and it is

necessary to finish thru an activity that explicitly terminates the process.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 33 / 35 -

3.1.2 Pattern Extra 2, Cancel Path

Description

A point in a workflow process where we want to cancel a group of activities that are executed

consecutively.

Examples

- A process splits in some branches. During the execution we want to cancel a whole

branch.

Support

Bonita supports the ability to cancel a path of activities inside a process.

Suppose that we have a diagram process like this:

What happens with A2 and A3 activities if A1 is cancelled? As they are not reachable they

should be cancelled too. If we execute a hook that cancels A1 in our example the process will

look like this:

A1 has been cancelled after the hook execution and then, the Bonita engine, has cancelled A2

and A3.

But what happens if we have a merging point?

C is an AND-JOIN activity C is an OR-JOIN activity

Cancel is propagated from A to C Cancel is not propagated because B can be

executed. C is cancelled if B is cancelled too.

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 34 / 35 -

4 HOW TO RUN THE TESTS

First of all you have to download and install the latest version of Bonita from:

 http://bonita.objectweb.org

To install the pattern examples:

� If you are using Windows:

cd %BONITA_HOME%\src\main\client\hero\client\samples\patterns

ant install_patterns

� If you are using Linux:

cd $BONITA_HOME/src/main/client/hero/client/samples/patterns/

ant install_patterns

To execute the pattern examples you can use the Bonita manager application:

� If you are using Windows:

cd %BONITA_HOME%

ant manager

� If you are using Linux:

cd $BONITA_HOME

ant manager

Bull R&D BONITA / Workflow patterns support
V1.1
02/05/06

- 35 / 35 -

5 APENDIX: LEGEND

Shapes legend:

Bonita activity

Can be an AND-JOIN or OR-JOIN

Transition from an activity to another

Transition with condition

Iteration between two activities

Activities colors legend:

Activity in INITIAL state

Activity in READY state

Activity in EXECUTING state

Activity in TERMINATED state

Activity in DEAD state

Pattern support legend:

Pattern support with Bonita workflow

Patter partially supported with Bonita workflow

Pattern not supported with Bonita workflow

test.equals("1")

