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Basic Control Patterns 
 

Pattern 1: Sequence  
Execute activities in sequence. 

 

Sequence is the most basic workflow pattern. It is required when there is a 
dependency between two or more tasks so that one task cannot be started 
(scheduled) before another task is finished. 

 

 

 

Description: 

An activity in a workflow process is enabled after the completion of another activity 
in the same process. 

 

Synonyms:  

Sequential routing, serial routing.  

 

Example: 

1. Activity send_bill is executed after the execution of activity send_goods. 

2. An insurance claim is evaluated after the client’s file is retrieved. 

3. Activity add_air_miles is executed after the execution on activity book_flight. 

 

 

Pattern 2: Parallel Split  
Execute activities in parallel. 

 

Parallel Split is required when two or more activities need to be executed in parallel. 
Parallel Split is easily supported by most workflow engines except for the most basic 
scheduling (timed) systems that do not require any degree of concurrency. 
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Description: 

A point in the workflow process where a single thread of control splits into multiple 
treads of control which can be executed in parallel, thus allowing activities to be 
executed simultaneously or in any order. 

 

Synonyms:  

AND-split, parallel routing, fork. 

 

Example: 

1. The execution of the activity payment enables the execution of the activities 
ship_goods and inform_customer. 

2. After registering an insurance claim two parallel sub-processes are triggered: one 
for checking the policy of the customer and one for assessing the actual damage. 

 

 

Pattern 3: Synchronization  
Synchronize two parallel threads of execution. 

Synchronization is required when an activity can be started only when two parallel 
threads complete. 
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Description: 

A point in the workflow process where multiple parallel sub-processes/activities 
converge into one single thread of control. 

 

Synonyms:  

AND-join, synchronizer. 

 

Example: 

1. Insurance claims are evaluated after the policy has been checked and the actual 
damage has been valuated. 

 

PECTRA Technology Inc. 

Synchronization is made by using an identification number. The instances that were 
created from an AND Split have this same identification number, therefore in the 
synchronization, from the state before an activity, instances with the same 
identification number are selected. In a Join with synchronization the activity 
executes when there are tokens with the same identification number in all the states 
previous to that activity. 
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Pattern 4: Exclusive Choice  
Choose one execution path from many alternatives. 

 

 

 

Description: 

A point in the workflow process where based on a decision or workflow control data, 
one of several branches is chosen. 

 

Synonyms:  

XOR-split, conditional routing, switch, decision. 

 

Example: 

1. In the process client_claim two requirement types are evaluated and two options 
are possible: claim solved, or claim derived. The process will be split depending on 
the decision taken. 
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Pattern 5: Simple Merge  
Merge two alternative execution paths.  

Merge is required if we want to merge to alternative execution paths into one. 

 

 

 

Description: 

A point in the workflow process where two or more alternative branches come 
together without synchronization. In other words the merge will be triggered once 
any of the incoming transitions are triggered.   

 

Synonymes: 

XOR-join, asynchronous join, merge. 

 

Example: 

1. Activity assess_claim is enabled after either pay_damage or contact_customer is 
executed.  
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Advanced Branching and Synchronization Patterns 

Pattern 6: Multiple Choice  
Choose several execution paths from many alternatives. 

 

Pattern Exclusive Choice assumes that exactly one of the alternatives is selected and 
executed, i.e. it corresponds to an exclusive OR. Sometimes it is useful to deploy a 
construct which can choose multiple alternatives from a given set of alternatives. 
Therefore, we introduce the (inclusive) multi-choice.  

  

 

 

Description: 

A point in the workflow process where based on a decision or workflow control data, 
one or more branches are chosen. 

  

Synonyms: 

Conditional routing, selection, OR-split. 

 

Example: 

1. After executing the activity evaluate_damage the activity 
contact_fire_department or the activity contact_insurance_company is executed. At 
least one of these activities is executed. However, it is also possible that both need 
to be executed. 
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Pattern 7: Multiple Merge  
Merge many execution paths without synchronizing. 

 

This pattern aims to address the problem mentioned in Simple Merge. That is the 
situation when more than one incoming transition of a merge is being activated. 

 

 

 

Description: 

Multiple Merge is a point in the workflow process where two or more branches 
converge without synchronization. If more than one branch is executed, possibly at 
the same time, the activity that follows the merge starts every time for each 
incoming branch (i.e. in the figure above, D will be instantiated twice). 
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Example: 

1. Sometimes two or more parallel branches share the same ending. Instead of 
replicating this (potentially complicated) process for every branch, a multi-merge can 
be used. A simple example of this would be two activities audit_application and 
process_application running in parallel which should both be followed by an activity 
close_case.  

 

Pattern 8: Discriminator  
Merge many execution paths without synchronizing. Execute the 
subsequent activity only once. 

 

This pattern can be seen as the converse of the multi-merge. It should be implied 
when our semantics is that only one activity should be instantiated after merge. 

 

 

 

Description: 

The discriminator is a point in a workflow process that waits for a number of 
incoming branches to complete before activating the subsequent activity. From that 
moment on it waits for all remaining branches to complete or ignores them. Once all 
incoming branches have been triggered, it resets itself so that it can be triggered 
again.  

 

Example: 

1. To improve query response time, a complex search is sent to two 
different databases over the Internet. The first one that comes up with the result 
should proceed the flow. The second result is ignored.  
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Pattern 9: N-out-of-M Join  
Merge many execution paths. Perform partial synchronization and execute 
subsequent activity only once. 

 

The following pattern can be seen as a generalization of the basic  Discriminator. We 
would like to synchronize N threads from M incoming transitions. 

 

Description: 

N-out-of-M Join is a point in a workflow process where M parallel paths converge into 
one. The subsequent activity should be activated once N paths have 
completed. Completion of all remaining paths should be ignored. Similarly to the 
discriminator, once all incoming branches have "fired", the join resets itself so that it 
can fire again.  

 

Synonyms: 

Partial join, discriminator, custom join. 

 

Example: 

1. A paper needs to be sent to three external reviewers. Upon receiving two reviews 
the paper can be processed. The third review can be ignored. 
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Pattern 10: Synchronizing Join  
Merge many execution paths. Synchronize if many paths are taken. Simple 
merge if only one execution path is taken. 

 

The Multiple Choice pattern can be handled quite easily by today's workflow 
products. Unfortunately, the implementation of the corresponding merge construct 
(OR-join) is much more difficult to realize. The OR-join should have the capability to 
synchronize parallel flows and to merge alternative flows. The difficulty is to decide 
when to synchronize and when to merge. Synchronizing alternative flows leads to 
potential deadlocks and merging parallel flows may lead to the undesirable multiple 
execution of activities.  

 

Description: 

A point in the workflow process where multiple paths converge into one single 
thread. If more than one path is taken, synchronization of the active threads needs 
to take place. If only one path is taken, the alternative branches should reconverge 
without synchronization. 

Synonyms: 

Synchronizing join. 

 

Example: 

1. After one or both activities medical exam and road test have been completed 
(depending on if they have been executed at all), the activity issue_driven_license 
needs to be executed just once. 

PECTRA Technology Inc. 

Synchronization is made by using the identification number, the instances that were 
created from an AND Split have this identification number equal, therefore in the 
synchronization, from the status before to an activity, all instances with the same 
identification number are selected. In a Join with synchronization the activity splits 
up when there are tokens with the same identification number in all the status 
previous to that activity. 
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Structural Patterns 
 

Pattern 11: Arbitrary Cycles  
Execute workflow graph w/out any structural restriction on loops. 

 

During the workflow analysis/design time it is undesirable to be exposed to various 
syntactical constrains of the specific workflow enactment tool such as for example 
that there should be only one entry and one exit point to the loop. In fact, to achieve 
proper abstraction, the workflow engine should allow for execution of unconstrained 
models as typically they are much more suitable for the end-users to trace the 
execution of the process. 

 

Description: 

A point in a workflow process where one or more activities can be done repeatedly. 

 

Synonyms: 

Loop, iteration, cycle. 

 

Example: 

1. Most of the initial workflow models at the analysis stage contain arbitrary cycles (if 
they contain cycles at all). The end of the path can be reached, when activity 1 is 
executed and handled correctly. Through the use of more variables and conditions a 
loop can have more or less complex appearances.  
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Pattern 12: Implicit Termination  
Terminate if there is nothing to be done. 

 

Another example of the requirement imposed by some of the workflow engines on a 
modeler is that the workflow model is to contain only one ending node, or in case of 
many ending nodes, the workflow model will terminate when the first one is reached. 
Again, most business models do not follow this pattern - it is more natural to think of 
a business process as terminated once there is nothing else to be done. 

 

Description: 

A given sub-process should be terminated when there is nothing else to be done. In 
other words, there are no active activities in the workflow and no other activity can 
be made active (and at the same time the workflow is not in deadlock). 

 

Example: 

1. The process generate_purchase_order ends with the activity goods_reception. The 
instance ends when activity authorize_manager or activity authorize_administration 
are terminated. (See figure in next page). 
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Problem Description: 

Most workflow engines terminate the process when an explicit Final node is reached. 
Any current activities that happen to be running by that time will be aborted which 
may be confusing to end-users. 

 

Pectra Technology Inc. has a workflow model that can contain more than one 
ending node. It is natural to think of a business process as terminated once the first 
ending node is executed. But with PECTRA Technology, when a parallel instance has 
concluded, it does not necessary imply that all others instances finish automatically.   

 

Patterns Involving Multiple Instances 
 

Pattern 13: MI with a priori known design time knowledge  
Generate many instances of one activity when a number of instances are 
known at the design time. 

 

We would like to create many instances for one activity. The number of instances is 
known at design time. 

 

Description: 

For one case an activity is enabled multiple times. The number of instances of a 
given activity for a given case is known at design time.  

 

Example: 

1. The requisition of hazardous material requires three different authorizations. 
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Pattern 14: MI with a priori known runtime knowledge  
Generate many instances of one activity when a number of instances can be 
determined at some point during the runtime (as in FOR loop). 

 

We would like to be able to generate many instances of an activity. The number of 
instances is dynamic, i.e. not known at the design time. It is known though at some 
point before all instances need to be executed. You can think about this pattern as a 
FOR loop that instantiates an activity. 

 

Description: 

For one case an activity is enabled multiple times. The number of instances of a 
given activity for a given case is variable and may depend on characteristics of the 
case or availability of resources, but is known at some stage during runtime, before 
the instances of that activity have to be created.  

 

Example: 

1. When booking a trip, the activity book_flight is executed multiple times if the trip 
involves multiple flights. 

 

PECTRA Technology Inc. handles this problem by using method End Activity. More 
than once in “Request flight booking”, in the same transaction, it generates as many 
instances as needed; each instance may have different values in the attributes. This 
technique is used often with filtering of activity in “Book flight” activity.  

 

Problem Description: 

Only a few workflow management systems offer a construct for the multiple 
activation of one activity for a given case. Most systems have to resort to a fixed 
number of parallel instances of the same activity or an iteration construct where the 
instances are processed sequentially.  
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Pattern 15: MI with no a priori runtime knowledge  
Generate many instances of one activity when a number of instances cannot 
be determined (as in WHILE loop). 

 

We would like to be able to generate many instances of an activity. The number of 
instances is dynamic, i.e. not known at the design time nor is it known at any stage 
during the execution of the process before all these instances needs to be activated. 
You can think about this pattern as a WHILE loop that instantiates an activity. 

 

Description: 

For one case an activity is enabled multiple times. The number of instances of a 
given activity for a given case is not known during design time, nor is it known at 
any stage during runtime, before the instances of that activity have to be 
created. Once all activities are completed, some other activity needs to be started. 
The difference with Pattern 14 is that even while some of these instances are being 
executed or already completed, new ones can be created.  

 

Example: 

The requisition of 100 computers involves an unknown number of deliveries. The 
number of computers per delivery is unknown and therefore the total number of 
deliveries is not known in advance. Once each delivery is obtained, it can be 
determined whether a next delivery is to come by comparing the total number of 
delivered goods so far with the number of the goods requested. 

 

PECTRA Technology Inc. handles this problem by using method End Activity. More 
than once in “Register Order” in the same transaction, it generates as many 
instances as needed; each instance may have different values in the attributes. This 
technique is used often with filtering of activity in “Send Products”.  

In “Register Order” can generate instances as many as needed and continue running 
allowing new instance to be created. 

 

Problem Description: 

Most workflow engines do not allow more than one instance of the same activity to 
be active at the same time. 
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Pattern 16: MI requiring synchronization  
Generate many instances of one activity and synchronize them afterwards. 

 

The other multiple-instances related patterns do not consider the synchronization of 
created instances. For examp le, spawning off a variable number of sub-processes 
from the main process does only launch multiple instances without considering 
synchronization issues. But sometimes it is required to continue the process only 
after all instances are completed, possibly w/out any a priori knowledge of how many 
instances were created. 

 

Description: 

For one case an activity is enabled multiple times. The number of instances may not 
be known at design time. After completing all instances of that activity another 
activity has to be started.  

 

Example: 

1. The requisition of 100 computers results in a certain number of deliveries. Once all 
deliveries are processed, the requisition has to be closed by means of 
payment_order. 

 

PECTRA Technology Inc.  

Within in the activity Send_products there must be a Script Pay Order. It enables not 
to execute the next activity until previous instance were completed under certain 
conditions. For this case, the Order Payment will not be issue until all 100 computers 
were delivered.  

 

Problem Description: 

Most workflow engines do not allow multiple instances. Languages that do allow 
multiple instances do not provide any construct that would allow for synchronization 
of these instances. Languages that support the Release construct do not provide any 
construct that would allow for synchronization of spawned off sub-processes. 
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PECTRA Technology Inc. solves this problem using a combination of scripting, “In 
box” filtering, and mono instance. Mono instance allows the instances to be grouped 
according to a common attribute. These instances will be subsequently visualized in 
Digital Gate as one single instance (mono instance) because of the indicated 
condition, and inside it, all the instances with the same attributes for which they 
were grouped. 
 

Stated Based Patterns 
 

Pattern 17: Deferred Choice  
Execute one of the two alternatives threads. The choice which thread is to 
be executed should be implicit. 

 

Moments of choice, such as supported by constructs as XOR-splits/OR-splits, in 
workflow management systems are typically of an explicit nature, i.e. they are based 
on data or they are captured through decision activities. This means that the choice 
is made a-priori, i.e. before the actual execution of the selected branch starts an 
internal choice is made. Sometimes this notion is not appropriate. We may want to 
have a situation where two threads are "enabled" for an execution (suppose one 
thread enables an activity A, the other enables activity B. We would like to see both 
activities on a worklist). Once that one of the thread is started, the other thread 
should be disabled (i.e. once activity A gets started, B should disappear from the 
worklist).  

 

 

 

Description: 

A point in the workflow process where one of several branches are chosen. In 
contrast to the XOR-split, the choice is not made explicitly (e.g. based on data or a 
decision) but several alternatives are offered to the environment. However, in 
contrast to the AND-split, only one of the alternatives is executed. This means that 
once the environment activates one of the branches the other alternative branches 
are withdrawn. It is important to note that the choice is delayed until the processing 
in one of the alternative branches is actually started, i.e. the moment of choice is as 
late as possible. 
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Synonyms:  

External choice, implicit choice. 

  

Example: 

1. A debtor must pay his invoices as much to “Judicial Management” as to “General 
Secretariat”. The debtor has the possibility to pay all in one place, i.e. he can pay all 
his invoices at “General Secretariat” - the ones that correspond to that area, and also 
the ones that correspond to “Judicial Management” area-. When paying all invoices 
to “Genera l Secretariat”, automatically the charge of the invoices corresponded to 
“Judicial Management” are canceled.  

 

PECTRA Technology Inc. handles this problem when canceling or blocking an 
instance; all other activities are totally cancelled by scripting. A dispatcher of 
Notification can be used notifying the process cancellation. 

 

Pattern 18: Interleaved Parallel Routing  
Execute two activities in random order, but not in parallel. 

 

Patterns Parallel Split and Synchronizing Join are typically used to specify parallel 
routing. Most workflow management systems support true concurrency, i.e. it is 
possible that two activities are executed for the same case at the same time. If these 
activities share data or other resources, true concurrency may be impossible or lead 
to anomalies such as lost updates or deadlocks.  
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Description: 

A set of activities is executed in an arbitrary order: Each activity in the set is 
executed, the order is decided at run-time, and no two activities are executed at the 
same moment (i.e. no two activities are active for the same workflow instance at the 
same time).  

 

Synonyms:  

Unordered sequence.  

 

Example: 

1. The Navy requires every job applicant has to take two tests: physical_test and 
mental_test. These tests can be conducted in any order but not at the same time.  

 

 

 

PECTRA Technology Inc. handles this by locking one activity when the activity 
physical_test is executing it, blocks the execution of the activity mental_test. When 
activity physical_test has been executed, mental_test can be executed. 

When both activities have been executed, they join synchronically to execute the 
activity certify_test . 

 

Problem Description: 

Since most workflow management systems support true concurrency when using 
constructs such as the Parallel Split and Synchronizing Join, it is not possible to 
specify interleaved parallel routing. 
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Pattern 19: Milestone  
Enable an activity until a milestone is reached 

 

This pattern allows for testing whether a workflow process has reached a certain 
phase. Upon reaching some phase we would like to disable the activities that were 
previously enabled.  

 

 

Description: 

The enabling of an activity depends on the case being in a specified state, i.e. the 
activity is only enabled if a certain milestone has been reached which did not expire 
yet. Consider three activities A, B, and C. Activity A is only enabled if activity B has 
been executed and C has not been executed yet, i.e. A is not enabled before the 
execution B and A is not enabled after the execution C.  

 

Synonyms:  

Arc test, deadline, state condition.  

 

Example: 

1. A customer can claim air miles until six months after the flight. Expired that period 
of time, the client cannot claim for the air miles. 

 

PECTRA Technology Inc. solves problem using attribute setting and Inbox filtering.  
Those Filters are used to modify the view of the Inbox by applying a condition by 
which some instances are hidden. 

Using attribute setting we set if the claim can be proceded. 
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Cancellation Patterns 
 

Pattern 20 y 21: Cancel Activity and Cancel Case  
Cancel (disable) the process. 

 

Description: 

A case, i.e. workflow instance, is removed completely. 

 

Synonyms:  

Withdraw case. 

 

Example: 

1. A debtor must pay his invoices as much to “Judicial Management” as to “General 
Secretariat”. The debtor has the possibility to pay all in one place, i.e. he can pay all 
his invoices at “General Secretariat” - the ones that correspond to that area, and also 
the ones that correspond to “Judicial Management” area-. When paying all invoices 
to “General Secretariat”, automatically the charge of the invoices corresponded to 
“Judicial Management” are canceled.  
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PECTRA Technology Inc. cancels running instances by means of scripting. 
cancelation is passed to the motor of workflow that cancels the instance. 

 

Problem Description: 

Workflow management systems typically do not support the withdrawal of an entire 
case using the (graphical) workflow language.  
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